

Adafruit IO Basics: ESP8266 + Arduino

Created by Todd Treece

https://learn.adafruit.com/adafruit-io-basics-esp8266-arduino

Last updated on 2024-06-03 01:58:34 PM EDT

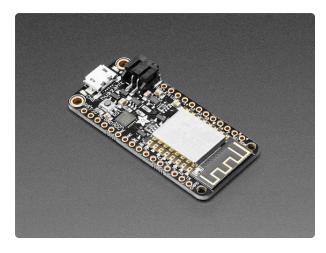

© Adafruit Industries Page 1 of 32

Table of Contents

Overview	3
Pros/Cons of the ESP8266	
Assembly	4
Header Options!	
Soldering in Plain Headers	
• Prepare the header strip:	
Add the breakout board:	
• And Solder!	
Soldering on Female Header	
• Tape In Place	
• Flip & Tack Solder	
And Solder!	
Using Arduino IDE	13
Install the Arduino IDE 1.6.8 or greater	
Install the ESP8266 Board Package	
Setup ESP8266 Support	
Blink Test	
Connecting via WiFi	
Arduino IO Library	22
Install the Required Libraries	
Adafruit IO Setup	23
Example Sketches	24
Example Sketch Setup	
Uploading the Sketch	
Viewing Data on Adafruit IO	
• Next Steps	
Adafruit IO FAQ	31
Encountering an issue with your Adafruit IO Arduino Project?	

© Adafruit Industries Page 2 of 32

Overview

Adafruit Feather HUZZAH with ESP8266 - Loose Headers

Feather is the new development board from Adafruit, and like its namesake, it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller...

https://www.adafruit.com/product/2821

The ESP8266 based Feather HUZZAH & the HUZZAH ESP8266 breakout are both very popular options for connecting projects to Adafruit IO. In this guide we are going to walk through the setup needed to get your ESP8266 up and running with the Arduino IDE & Adafruit IO. This same basic setup can be used as you progress through our Adafruit IO Basics series of guides.

Before you continue with this guide, you should consider running through the guides for the ESP8266 Feather or the ESP8266 breakout. We will cover all of the basic setup needed for connecting your ESP8266 to Adafruit IO, but the individual guides go into greater detail about each board.

- Adafruit HUZZAH ESP8266 breakout
- Adafruit Feather HUZZAH ESP8266

Pros/Cons of the ESP8266

Here are some quick pros & cons if you are considering using the ESP8266 for your Adafruit IO project.

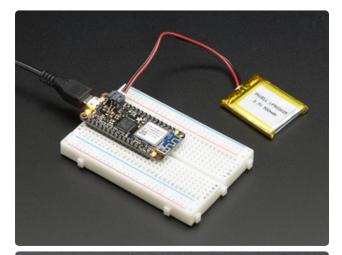
Pros

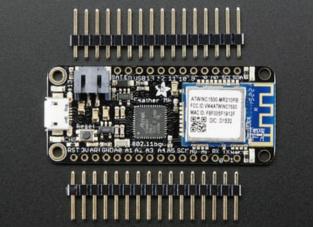
- Low cost
- Great support via the ESP8266 Arduino community
- Can be programmed using Lua & Python (MicroPython), in addition to Arduino
- Fast Uploads

© Adafruit Industries Page 3 of 32

Cons

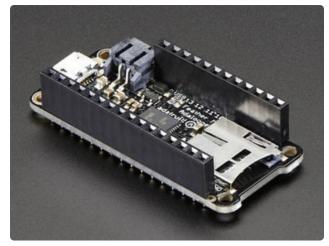
- Power hungry
- Limited number of GPIO pins
- One analog input pin

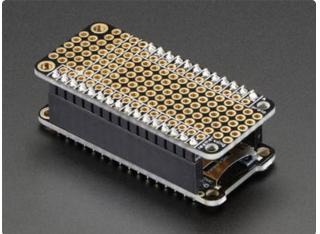

Lets get started with assembly.


Assembly

We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use and configure your Feather

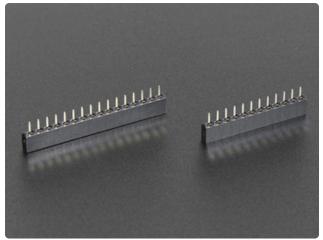
Header Options!

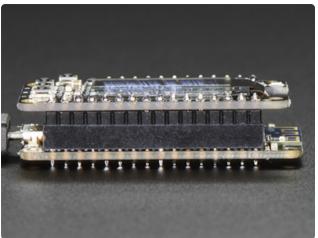

Before you go gung-ho on soldering, there's a few options to consider!



The first option is soldering in plain male headers, this lets you plug in the Feather into a solderless breadboard

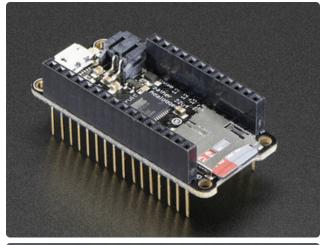
© Adafruit Industries Page 4 of 32

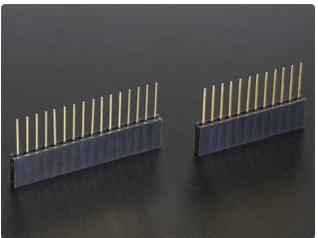




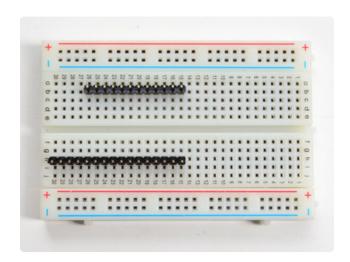
Another option is to go with socket female headers. This won't let you plug the Feather into a breadboard but it will let you attach featherwings very easily

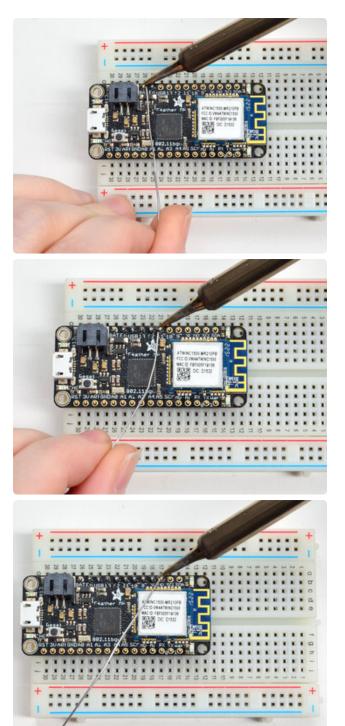
A few Feather boards require access to top-side components like buttons or connectors, making stacking impractical. Sometimes you can stack in the opposite order—FeatherWing underneath—or, if both Feather and Wing require top-side access, place the boards side-by-side with a FeatherWing Doubler (http://adafru.it/2890) or Tripler (http://adafru.it/3417).


© Adafruit Industries Page 5 of 32



We also have 'slim' versions of the female headers, that are a little shorter and give a more compact shape


© Adafruit Industries Page 6 of 32

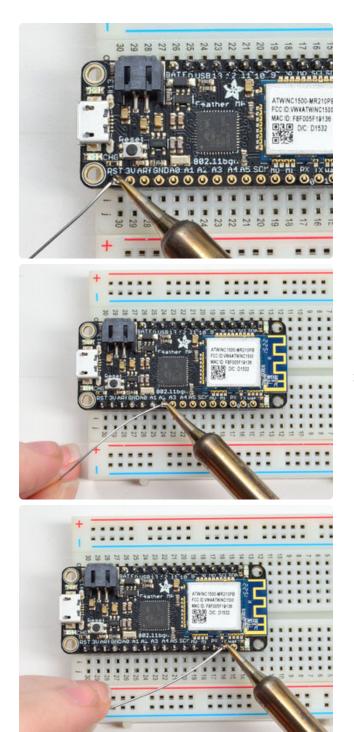

Finally, there's the "Stacking Header" option. This one is sort of the best-of-bothworlds. You get the ability to plug into a solderless breadboard and plug a featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip: Cut the strip to length if necessary. It will be easier to solder if you insert it into a breadboard - long pins down

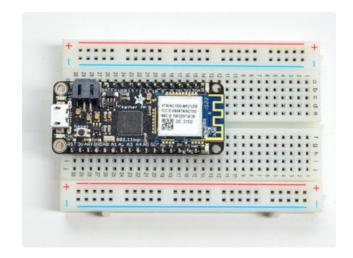
© Adafruit Industries Page 7 of 32

Add the breakout board:


Place the breakout board over the pins so that the short pins poke through the breakout pads

And Solder!

Be sure to solder all pins for reliable electrical contact.

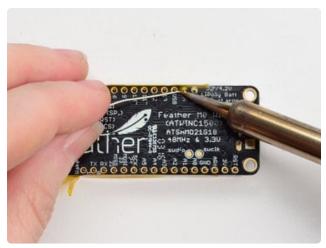

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries Page 8 of 32

Solder the other strip as well.

© Adafruit Industries Page 9 of 32

You're done! Check your solder joints visually and continue onto the next steps


Soldering on Female Header

Tape In Place

For sockets you'll want to tape them in place so when you flip over the board they don't fall out

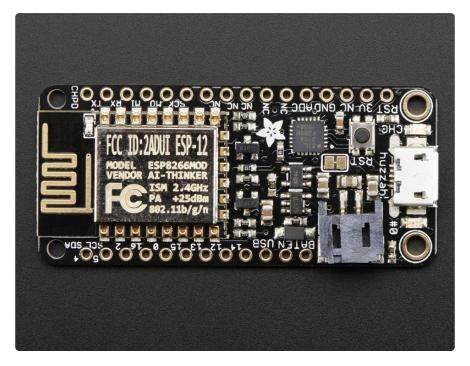
© Adafruit Industries Page 10 of 32

Flip & Tack Solder After flipping over, solder one or two points on each strip, to 'tack' the header in place

©Adafruit Industries Page 11 of 32

Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://adafru.it/aTk)).


© Adafruit Industries Page 12 of 32

You're done! Check your solder joints visually and continue onto the next steps

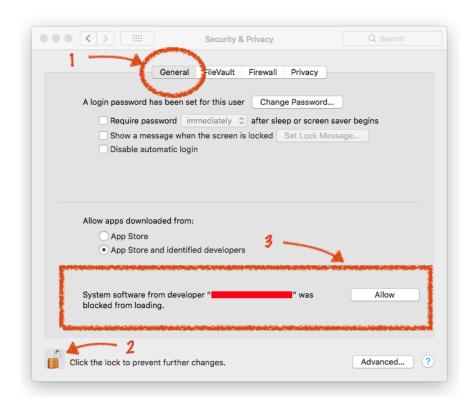
Using Arduino IDE

While the Feather HUZZAH ESP8266 comes pre-programmed with NodeMCU's Lua interpretter, you don't have to use it! Instead, you can use the Arduino IDE which may

© Adafruit Industries Page 13 of 32

be more familar. This will write directly to the firmware, erasing the NodeMCU firmware, so if you want to go back to Lua, use the flasher to re-install it adafru.it/f1O)

Don't forget to visit esp8266.com for the latest and greatest in ESP8266 news, software and gossip! (https://adafru.it/f1F)


In order to upload code to the ESP8266 and use the serial console, connect any datacapable micro USB cable to the Feather HUZZAH and the other side to your computer's USB port.

Don't forget you will also need to install the SiLabs CP2104 Driver:

Click here to download the CP2104
USB Driver

https://adafru.it/vrf

On Mac OS 10.13 and higher, in addition to installing, you will have to give the CP2104 kernel driver permission to load. You can find out if you need to give additional permission by visiting your Security & Privacy settings system preferences screen after installing and looking for the message that says, 'System software from developer "SiLabs" was blocked from loading', like in the picture below.

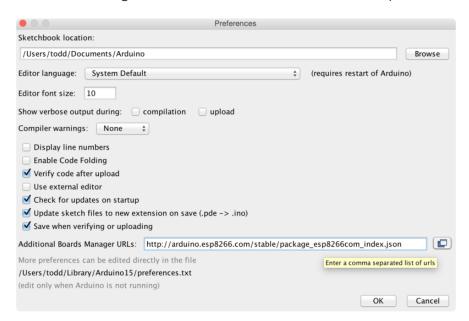
© Adafruit Industries Page 14 of 32

To allow the driver to load, click the lock icon, enter your password, and click "Allow" next to the warning message. After that, you may have to restart your computer before following the steps below and connecting to your Huzzah in the Arduino app.

If you are using Mac OS 10.12.6 (Sierra) and you cannot upload with the latest Mac OS VCP driver, please try the legacy v4 driver below. Note you will need to uninstall the v5 driver using uninstall.sh (in the driver package)

Download the CP2104 Legacy USB
Driver

https://adafru.it/ymF


Install the Arduino IDE 1.6.8 or greater

<u>Download Arduino IDE from Arduino.cc (1.6.8 or greater)</u> (https://adafru.it/f1P) from Arduino.cc

The latest is usually the best

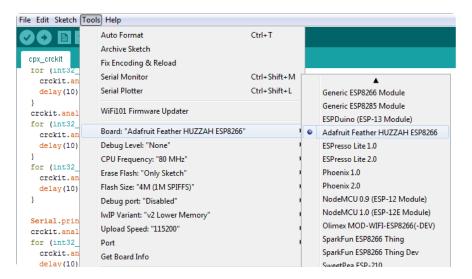
Install the ESP8266 Board Package

Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into Additional Board Manager URLs field in the Arduino v1.6.4+ preferences.

Visit our guide for how to add new boards to the Arduino 1.6.4+ IDE for more info about adding third party boards (https://adafru.it/f7X).

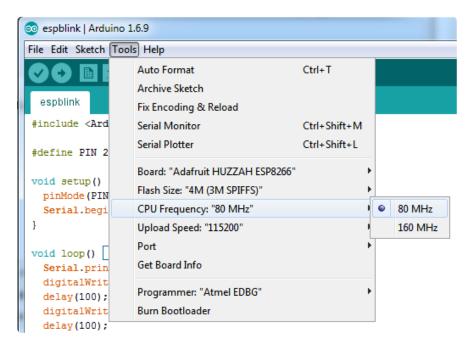
© Adafruit Industries Page 15 of 32

Next, use the **Board manager** to install the ESP8266 package.

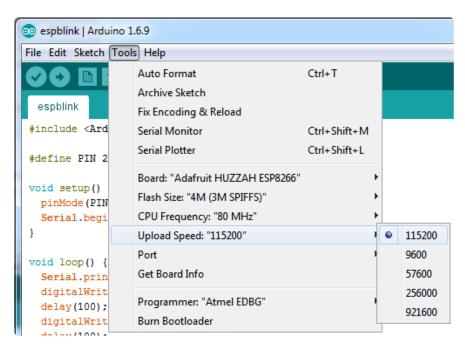

If you want to use this board with Adafruit IO Arduino - make sure you're on version 2.5.1 or ABOVE.

After the install process, you should see that esp8266 package is marked INSTALLED. Close the Boards Manager window once the install process has completed.

esp8266 by ESP8266 Community version 2.3.0 INSTALLED
Boards included in this package:
Generic ESP8266 Module, Olimex MOD-WIFI-ESP8266(-DEV), NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0 (ESP-12E Module), Adafruit HUZZAH
ESP8266 (ESP-12), ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, SparkFun Thing, SweetPea ESP-210, WeMos D1, WeMos D1
mini, ESPino (ESP-12 Module), ESPino (WROOM-02 Module), WifInfo, ESPDuino.
Online help
More Info


Setup ESP8266 Support

When you've restarted, select **Adafruit Feather HUZZAH ESP8266** from the Tools->Board dropdown


© Adafruit Industries Page 16 of 32

80 MHz as the CPU frequency

You can keep the Flash Sizeat "4M (3M SPIFFS)

For **Upload Speed**, select 115200 baud (You can also try faster baud rates, we were able to upload at a blistering 921600 baud but sometimes it fails & you have to retry)

The matching COM port for your FTDI or USB-Serial cable

© Adafruit Industries Page 17 of 32

```
CPU Frequency: "80 MHz"

Upload Speed: "115200"

Port

Programmer: "USBtinyISP"


Burn Bootloader

COM1

COM2

COM12
```

On a mac, you should look for the "SLAB_USBtoUART" port

Blink Test

We'll begin with the simple blink test

Enter this into the sketch window (and save since you'll have to)

```
void setup() {
  pinMode(0, OUTPUT);
}

void loop() {
  digitalWrite(0, HIGH);
  delay(500);
  digitalWrite(0, LOW);
  delay(500);
}
```

Now you can simply upload! The **Feather HUZZAH** has built in auto-reset that puts it into bootloading mode automagically

© Adafruit Industries Page 18 of 32

The sketch will start immediately - you'll see the LED blinking. Hooray!

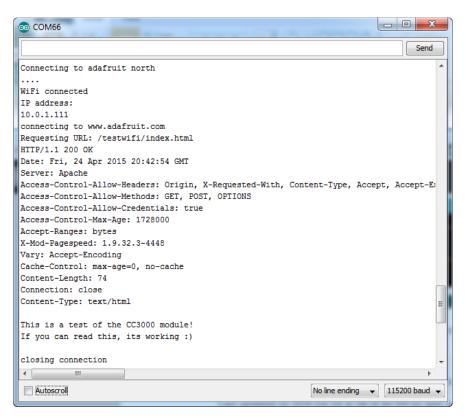
Connecting via WiFi

OK once you've got the LED blinking, lets go straight to the fun part, connecting to a webserver. Create a new sketch with this code:

```
Simple HTTP get webclient test
#include <ESP8266WiFi.h&gt;
const char* ssid
                   = "yourssid";
const char* password = "yourpassword";
const char* host = "wifitest.adafruit.com";
void setup() {
  Serial.begin(115200);
  delay(100);
  // We start by connecting to a WiFi network
  Serial.println();
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);
 WiFi.begin(ssid, password);
  while (WiFi.status() != WL CONNECTED) {
    delay(500);
    Serial.print(".");
  Serial.println("");
```

© Adafruit Industries Page 19 of 32

```
Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
int value = 0;
void loop() {
  delay(5000);
  ++value;
  Serial.print("connecting to ");
  Serial.println(host);
  // Use WiFiClient class to create TCP connections
  WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
    Serial.println("connection failed");
  }
  // We now create a URI for the request
  String url = "/testwifi/index.html";
  Serial.print("Requesting URL: ");
  Serial.println(url);
  // This will send the request to the server
  client.print(String("GET\dot{}") + url + " HTTP/1.1\r\n" +
               "Host: " + host + "\r\n" +
               "Connection: close\r\n\r\n");
  delay(500);
  // Read all the lines of the reply from server and print them to Serial
  while(client.available()){
    String line = client.readStringUntil('\r');
    Serial.print(line);
  Serial.println();
  Serial.println("closing connection");
```


Dont forget to update

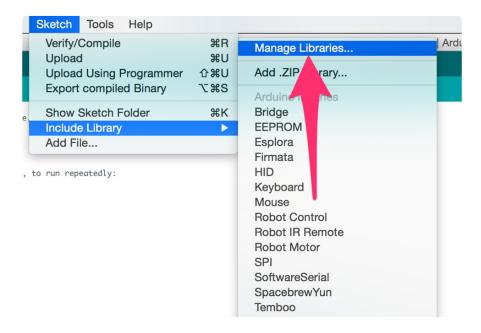
```
const char* ssid = "yourssid";
const char* password = "yourpassword";
```

to your access point and password, then upload the same way: get into bootload mode, then upload code via IDE

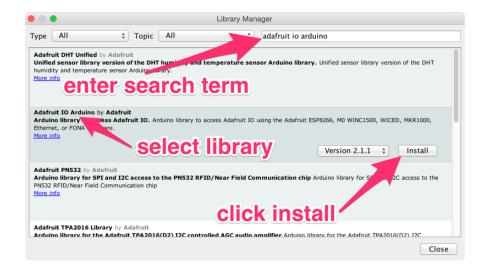
© Adafruit Industries Page 20 of 32

Open up the IDE serial console at 115200 baud to see the connection and webpage printout!

That's it, pretty easy!

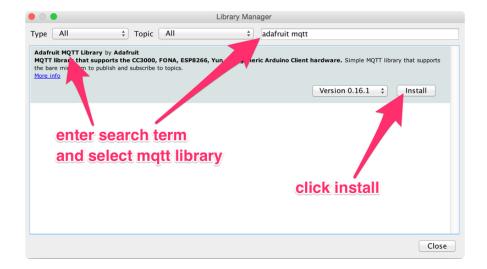

This page was just to get you started and test out your module. For more information, check out the <u>ESP8266 port github repository</u> (https://adafru.it/eSH) for much more up-to-date documentation!

© Adafruit Industries Page 21 of 32

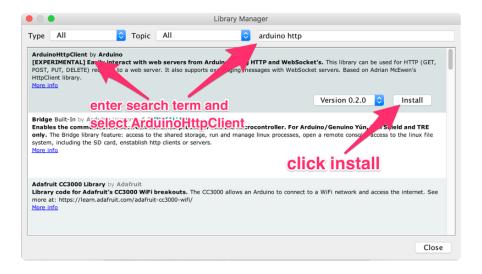

Arduino IO Library

Install the Required Libraries

Now we will need to install the Adafruit IO, Adafruit MQTT, and ArduinoHttpClient libraries using the Arduino Library Manager. Navigate to the Manage Libraries... option in the Sketch -> Include Library menu.



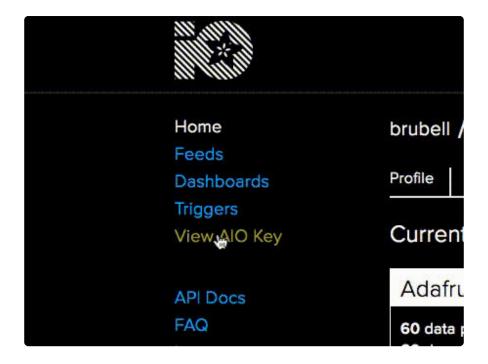
Enter Adafruit IO Arduino into the search box, and click Install on the Adafruit IO Arduino library option to install version 3.2.0 or higher.



Enter Adafruit MQTT into the search box, and click Install on the Adafruit MQTT library option to install version 1.0.0 or higher.

© Adafruit Industries Page 22 of 32

Enter ArduinoHttpClient into the search box, and click Install on the ArduinoHttpClient library option to install version 0.2.0 or higher.



Adafruit IO Setup

You are also going to need your Adafruit IO username and secret API key.

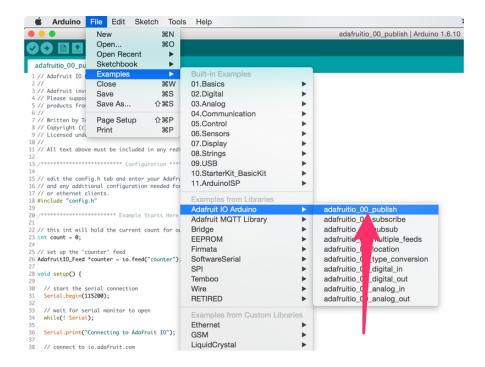

Navigate to your profile (https://adafru.it/fsU) and click the View AIO Key button to retrieve them. Write them down in a safe place, you'll need them for the next step.

© Adafruit Industries Page 23 of 32

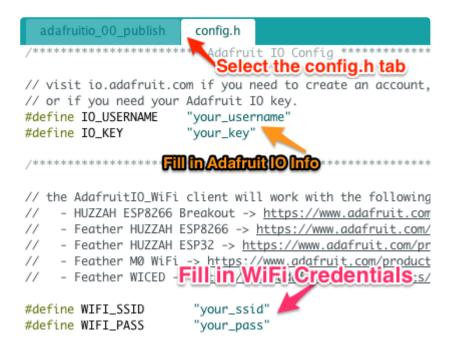
Example Sketches

In the <u>Adafruit IO Basics</u> series of guides, the examples will be using hardware found in our Adafruit IO starter kit. If you are following along, you might want to consider using the starter kit below.

Huzzah! Adafruit.io Internet of Things Feather ESP8266

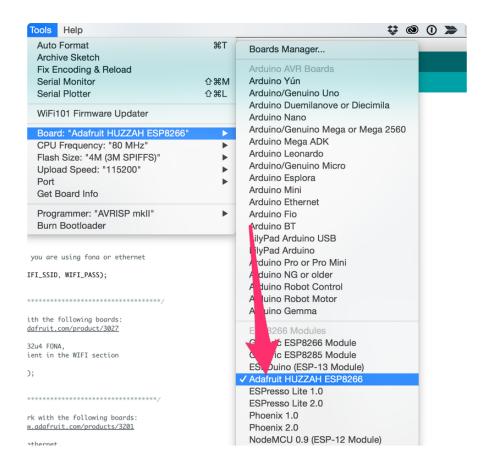

OK you've signed up for Adafruit.io and you're ready to build something cool and Internet-connected. All you need is this starter kit which...

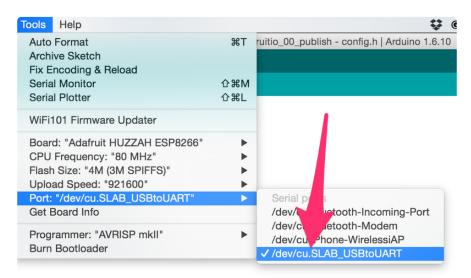
https://www.adafruit.com/product/2680


Example Sketch Setup

Now that we have installed all of the dependencies, we can try to run one of the Adafruit IO example sketches. Navigate to the adafruitio_00_publish sketch by opening the File -> Examples -> Adafruit IO Arduino menu.

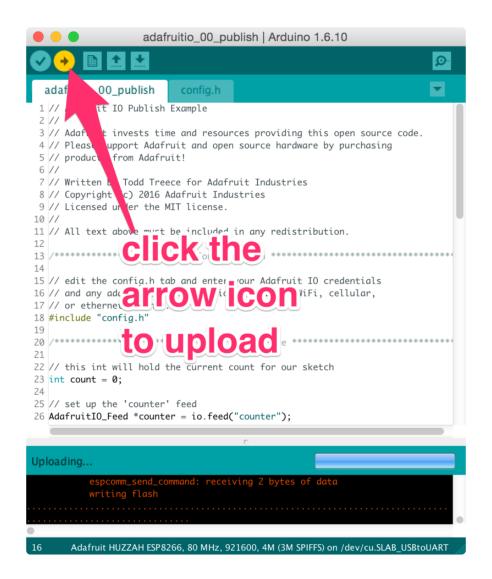
© Adafruit Industries Page 24 of 32


Click on the **config.h** tab, and replace the placeholders with your Adafruit IO credentials and WiFi connection info.

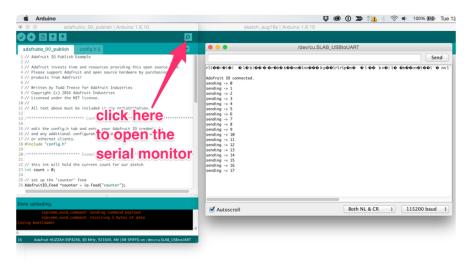

Uploading the Sketch

Next we will need to select the **Adafruit HUZZAH ESP8266** from the **Tools** -> **Board** menu.

© Adafruit Industries Page 25 of 32



Then, select the proper COM port on Windows, or USB device on OS X.



Use the arrow icon (→) to upload the example sketch to the ESP8266. It might take a while, but you should see a **Upload complete.** message at the bottom of the window when the process has finished.

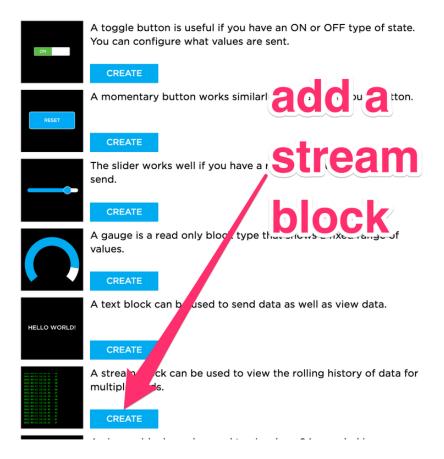
© Adafruit Industries Page 26 of 32

You can now click the serial monitor icon to view the output of the sketch. If everything goes as expected, you should see counter values being sent to Adafruit IO. If not, check your WiFi and Adafruit IO credentials in **config.h** and try uploading your sketch again using the process above.

© Adafruit Industries Page 27 of 32

Hitting an error while compiling? Check the ESP8266 IO FAQ: https://learn.adafruit.com/adafruit-io-basics-esp8266-arduino/adafruit-io-faq

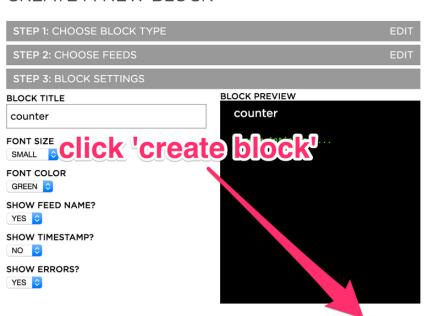
Viewing Data on Adafruit IO


Now that your ESP8266 is sending data to Adafruit IO, you can view the data stream on <u>io.adafruit.com</u> by adding a stream block to your dashboard. To do this, click on the + icon on the right hand side of the dashboard.

Add a new stream block by selecting it from the modal.

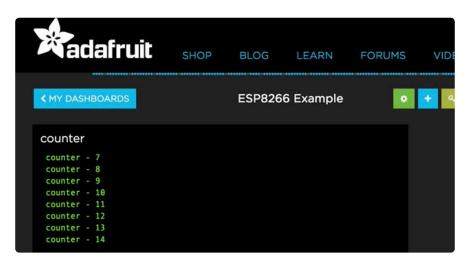
© Adafruit Industries Page 28 of 32

CREATE A NEW BLOCK



Next, choose the **counter** feed from the list, and click the **Next Step** button.

Modifythe stream block options as needed, and click the **create block** button when you are finished.


© Adafruit Industries Page 29 of 32

×

CREATE BLOCK

You should now see data flowing into your stream block from your ESP8266.

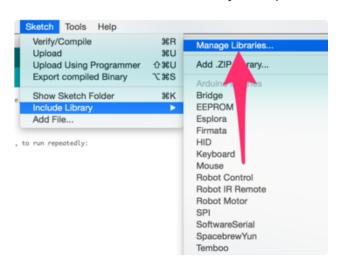
Next Steps

If you would like to continue your educational journey with your ESP8266 & Adafruit IO, check out the Adafruit IO Basics series of guides.

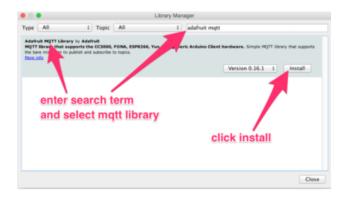
© Adafruit Industries Page 30 of 32

Adafruit IO FAQ

Encountering an issue with your Adafruit IO Arduino Project?


If you're having an issue compiling, connecting, or troubleshooting your project, check this page first.

Don't see your issue? Post up on the Adafruit IO Forum with your issue (https://adafru.it/pIC).


I encounter the following error when compiling my sketch:

fatal error: Adafruit_MQTT.h: No such file or directory, #include
"Adafruit_MQTT.h"

The Adafruit IO Arduino library is dependent on our Adafruit IO MQTT Library.

To resolve this error, from the Arduino IDE, navigate to the **Manage Libraries...** option in the **Sketch** -> **Include Library** menu.

To resolve this error, from the Arduino IDE, navigate to the **Manage Libraries...** option in the **Sketch** -> **Include Library** menu.

© Adafruit Industries Page 31 of 32

My Serial Monitor prints "..." endlessly after the "Connecting to Adafruit IO" message

Your board is not connecting to Adafruit IO, but why? Let's find out:

```
First, check in config.h that you have the correct IO_USERNAME, IO_KEY, WIFI_SSID, and WIFI_PASS are set correctly.
```

Next, we're going to modify the while loop which waits for an IO connection in your sketch. Change the line in the status check loop

```
from Serial.println(.); to Serial.println(io.statusText());

// wait for a connection
while(io.status() < AIO_CONNECTED) {
   Serial.println(io.statusText());
   delay(500);
}</pre>
```

Verify and re-upload the sketch. If you're receiving a **Network disconnected** error message, the board is not able to talk to the internet. Re-check your hardware, connections, and router settings.

If it's still not showing Adafruit IO connected, check the IO status on the Adafruit Status page (https://adafru.it/Oc0) to make sure the service is online.

My data isn't displaying, is Adafruit IO's {service/MQTT/API} down?

Possibly - you can check IO status on the Adafruit Status page (https://adafru.it/Oc0).

Is my data being sent properly? Am I sending too much data?

There's a monitor page built-into Adafruit IO (https://adafru.it/DOK) which provides a live view of incoming data and error messages. Keep this page open while you send data to your Adafruit IO devices to monitor data and errors.

© Adafruit Industries Page 32 of 32