Consider the infinite sequence of numbers An|n>0 = (1,1,3,4,8,11,...) defined recursively as follows.
A1 = A2 = 1.
An = Bn−1 + An−2, if n > 2.
B1 = B2 = 2.
Bn = An−1 + Bn−2, if n > 2.
$$
A_n = \left\{\begin{aligned}
&1 && n = 1,2\\
&B_{n-1}+A_{n-2} && n > 2
\end{aligned}
\right. \\
B_n = \left\{\begin{aligned}
&2 && n = 1,2\\
&A_{n-1}+B_{n-2} && n > 2
\end{aligned}
\right.
$$