Mandatory-to-Implement Algorithms for Authors and Recipients of Software Update for the Internet of Things manifests
draft-ietf-suit-mti-00
The information below is for an old version of the document.
| Document | Type |
This is an older version of an Internet-Draft whose latest revision state is "Active".
|
|
|---|---|---|---|
| Authors | Brendan Moran , Øyvind Rønningstad , Akira Tsukamoto | ||
| Last updated | 2023-03-29 (Latest revision 2023-03-13) | ||
| Replaces | draft-moran-suit-mti | ||
| RFC stream | Internet Engineering Task Force (IETF) | ||
| Formats | |||
| Reviews |
IOTDIR Telechat review
(of
-18)
by Lorenzo Corneo
Ready w/nits
|
||
| Additional resources | Mailing list discussion | ||
| Stream | WG state | WG Document | |
| Document shepherd | (None) | ||
| IESG | IESG state | I-D Exists | |
| Consensus boilerplate | Unknown | ||
| Telechat date | (None) | ||
| Responsible AD | (None) | ||
| Send notices to | (None) |
draft-ietf-suit-mti-00
SUIT B. Moran
Internet-Draft Arm Limited
Intended status: Standards Track Ø. Rønningstad
Expires: 14 September 2023 Nordic Semiconductor
A. Tsukamoto
13 March 2023
Mandatory-to-Implement Algorithms for Authors and Recipients of Software
Update for the Internet of Things manifests
draft-ietf-suit-mti-00
Abstract
This document specifies algorithm profiles for SUIT manifest parsers
and authors to ensure better interoperability. These profiles apply
specifically to a constrained node software update use case.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 14 September 2023.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Moran, et al. Expires 14 September 2023 [Page 1]
Internet-Draft MTI SUIT Algorithms March 2023
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. Digest Algorithms . . . . . . . . . . . . . . . . . . . . 3
2.2. Authentication Algorithms . . . . . . . . . . . . . . . . 3
2.2.1. Symmetric Authentication Algorithm . . . . . . . . . 3
2.2.2. Asymmetric Classical Authentication Algorithms . . . 3
2.2.3. Asymmetric Post-Quantum Authentication Algorithms . . 4
2.3. Key Exchange Algorithms . . . . . . . . . . . . . . . . . 4
2.3.1. Symmetric . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2. Asymmetric Classical . . . . . . . . . . . . . . . . 4
2.4. Encryption Algorithms . . . . . . . . . . . . . . . . . . 4
3. Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1. Symmetric MTI profile: suit-sha256-hmac-a128-ccm . . . . 4
3.2. Current Asymmetric MTI Profile 1:
suit-sha256-es256-ecdh-a128gcm . . . . . . . . . . . . . 4
3.3. Current Asymmetric MTI Profile 2:
suit-sha256-eddsa-ecdh-a128gcm . . . . . . . . . . . . . 5
3.4. Future Asymmetric MTI Profile:
suit-sha256-hsslms-hpke-a128gcm . . . . . . . . . . . . . 5
3.5. Other Profiles: . . . . . . . . . . . . . . . . . . . . . 5
4. Security Considerations . . . . . . . . . . . . . . . . . . . 6
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 6
6. A. Full CDDL . . . . . . . . . . . . . . . . . . . . . . . . 6
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1. Normative References . . . . . . . . . . . . . . . . . . 9
7.2. Informative References . . . . . . . . . . . . . . . . . 9
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 10
1. Introduction
Mandatory algorithms may change over time due to an evolving threat
landscape. Algorithms are grouped into algorithm profiles to account
for this. Profiles may be deprecated over time. SUIT will define
four choices of MTI profile specifically for constrained node
software update. These profiles are:
* One Symmetric MTI profile
* Two "Current" Asymmetric MTI profiles
* One "Future" Asymmetric MTI profile
At least one MTI algorithm in each category MUST be FIPS qualified.
Moran, et al. Expires 14 September 2023 [Page 2]
Internet-Draft MTI SUIT Algorithms March 2023
Because SUIT presents an asymmetric communication profile, with
powerful/complex manifest authors and constrained manifest
recipients, the requirements for Recipients and Authors are
different.
Recipients MAY choose which MTI profile they wish to implement. It
is RECOMMENDED that they implement the "Future" Asymmetric MTI
profile. Recipients MAY implement any number of other profiles.
Authors MUST implement all MTI profiles. Authors MAY implement any
number of other profiles.
Other use-cases of SUIT MAY define their own MTI algorithms.
2. Algorithms
The algorithms that form a part of the profiles defined in this
document are grouped into:
* Digest Algorithms
* Authentication Algorithms
* Key Exchange Algorithms
* Encryption Algorithms
The COSE algorithm ID [IANA-COSE] for each algorithm is given in
parentheses.
2.1. Digest Algorithms
* SHA-256 (-16)
2.2. Authentication Algorithms
Authentication Algorithms are divided into three groups: Symmetric,
Asymmetric Classical, and Asymmetric Post-Quantum
2.2.1. Symmetric Authentication Algorithm
* HMAC-256 (5)
2.2.2. Asymmetric Classical Authentication Algorithms
* ES256 (-7)
* EdDSA (-8)
Moran, et al. Expires 14 September 2023 [Page 3]
Internet-Draft MTI SUIT Algorithms March 2023
2.2.3. Asymmetric Post-Quantum Authentication Algorithms
* HSS-LMS (-46) [RFC8778]
2.3. Key Exchange Algorithms
Key Exchange Algorithms are divided into two groups: Symmetric, and
Asymmetric Classical
2.3.1. Symmetric
* A128 (-3)
2.3.2. Asymmetric Classical
* COSE HPKE (TBD)
* ECDH-ES + HKDF-256 (-25)
2.4. Encryption Algorithms
* A128GCM (1)
3. Profiles
Recognized profiles are defined below.
3.1. Symmetric MTI profile: suit-sha256-hmac-a128-ccm
This profile requires the following algorithms:
* SHA-256
* HMAC-256
* A128W Key Wrap
* AES-CCM-16-128-128
3.2. Current Asymmetric MTI Profile 1: suit-sha256-es256-ecdh-a128gcm
This profile requires the following algorithms:
* SHA-256
* ES256
* ECDH
Moran, et al. Expires 14 September 2023 [Page 4]
Internet-Draft MTI SUIT Algorithms March 2023
* AES-128-GCM
3.3. Current Asymmetric MTI Profile 2: suit-sha256-eddsa-ecdh-a128gcm
This profile requires the following algorithms:
* SHA-256
* EDDSA
* ECDH
* AES-128-GCM
3.4. Future Asymmetric MTI Profile: suit-sha256-hsslms-hpke-a128gcm
This profile requires the following algorithms:
* SHA-256
* HSS-LMS
* HPKE
* AES-128-GCM
3.5. Other Profiles:
Optional classical and PQC profiles are defined below.
* suit-sha256-eddsa-ecdh-es-chacha-poly
- SHA-256
- EdDSA
- ECDH-ES + HKDF-256
- ChaCha20 + Poly1305
* suit-sha256-falcon512-hpke-a128gcm
- SHA-256
- Falcon-512
- HPKE
Moran, et al. Expires 14 September 2023 [Page 5]
Internet-Draft MTI SUIT Algorithms March 2023
- AES-128-GCM
* suit-shake256-dilithium-kyber-a128gcm
- SHAKE256
- Crystals-Dilithium
- Crystal-Kyber
- AES-128GCM
4. Security Considerations
For the avoidance of doubt, there are scenarios where payload or
manifest encryption are not required. In these scenarios, the
encryption element of the selected profile is simply not used.
5. IANA Considerations
TODO
-- back
6. A. Full CDDL
The following CDDL creates a subset of COSE for use with SUIT. Both
tagged and untagged messages are defined. SUIT only uses tagged COSE
messages, but untagged messages are also defined for use in protocols
that share a ciphersuite with SUIT.
To be valid, the following CDDL MUST have the COSE CDDL appended to
it. The COSE CDDL can be obtained by following the directions in
[RFC9052], Section 1.4.
SUIT_COSE_tool_tweak /= suit-sha256-hmac-a128-ccm
SUIT_COSE_tool_tweak /= suit-sha256-es256-ecdh-a128gcm
SUIT_COSE_tool_tweak /= suit-sha256-eddsa-ecdh-a128gcm
SUIT_COSE_tool_tweak /= suit-sha256-hsslms-hpke-a128gcm
SUIT_COSE_tool_tweak /= SUIT_COSE_Profile_HMAC_A128CCM
SUIT_COSE_tool_tweak /= SUIT_COSE_Profile_ES256_ECDH_A128GCM
SUIT_COSE_tool_tweak /= SUIT_COSE_Profile_EDDSA_ECDH_A128GCM
SUIT_COSE_tool_tweak /= SUIT_COSE_Profile_HSSLMS_HPKE_A128GCM
suit-sha256-hmac-a128-ccm = [5, 12]
suit-sha256-es256-ecdh-a128gcm = [-7, 1]
suit-sha256-eddsa-ecdh-a128gcm = [-8, 1]
Moran, et al. Expires 14 September 2023 [Page 6]
Internet-Draft MTI SUIT Algorithms March 2023
suit-sha256-hsslms-hpke-a128gcm = [-46, 1]
SUIT_COSE_Profile_HMAC_A128CCM = SUIT_COSE_Profile<5,12> .and COSE_Messages
SUIT_COSE_Profile_ES256_ECDH_A128GCM = SUIT_COSE_Profile<-7,1> .and COSE_Messages
SUIT_COSE_Profile_EDDSA_ECDH_A128GCM = SUIT_COSE_Profile<-8,1> .and COSE_Messages
SUIT_COSE_Profile_HSSLMS_HPKE_A128GCM = SUIT_COSE_Profile<-46,1> .and COSE_Messages
SUIT_COSE_Profile<authid, encid> = SUIT_COSE_Messages<authid,encid>
SUIT_COSE_Messages<authid, encid> = SUIT_COSE_Untagged_Message<authid, encid> /
SUIT_COSE_Tagged_Message<authid, encid>
SUIT_COSE_Untagged_Message<authid, encid> = SUIT_COSE_Sign<authid> /
SUIT_COSE_Sign1<authid> / SUIT_COSE_Encrypt<encid> /
SUIT_COSE_Encrypt0<encid> / SUIT_COSE_Mac<authid> /
SUIT_COSE_Mac0<authid>
SUIT_COSE_Tagged_Message<authid, encid> = SUIT_COSE_Sign_Tagged<authid> /
SUIT_COSE_Sign1_Tagged<authid> / SUIT_COSE_Encrypt_Tagged<encid> /
SUIT_COSE_Encrypt0_Tagged<encid> / SUIT_COSE_Mac_Tagged<authid> /
SUIT_COSE_Mac0_Tagged<authid>
; Note: This is not the same definition as is used in COSE.
; It restricts a COSE header definition further without
; repeating the COSE definition. It should be merged
; with COSE by using the CDDL .and operator.
SUIT_COSE_Profile_Headers<algid> = (
protected : bstr .cbor SUIT_COSE_alg_map<algid>,
unprotected : SUIT_COSE_header_map
)
SUIT_COSE_alg_map<algid> = {
1 => algid,
* int => any
}
SUIT_COSE_header_map = {
* int => any
}
SUIT_COSE_Sign_Tagged<authid> = #6.98(SUIT_COSE_Sign<authid>)
SUIT_COSE_Sign<authid> = [
SUIT_COSE_Profile_Headers<authid>,
payload : bstr / nil,
signatures : [+ SUIT_COSE_Signature<authid>]
]
Moran, et al. Expires 14 September 2023 [Page 7]
Internet-Draft MTI SUIT Algorithms March 2023
SUIT_COSE_Signature<authid> = [
SUIT_COSE_Profile_Headers<authid>,
signature : bstr
]
SUIT_COSE_Sign1_Tagged<authid> = #6.18(SUIT_COSE_Sign1<authid>)
SUIT_COSE_Sign1<authid> = [
SUIT_COSE_Profile_Headers<authid>,
payload : bstr / nil,
signature : bstr
]
SUIT_COSE_Encrypt_Tagged<encid> = #6.96(SUIT_COSE_Encrypt<encid>)
SUIT_COSE_Encrypt<encid> = [
SUIT_COSE_Profile_Headers<encid>,
ciphertext : bstr / nil,
recipients : [+SUIT_COSE_recipient<encid>]
]
SUIT_COSE_recipient<encid> = [
SUIT_COSE_Profile_Headers<encid>,
ciphertext : bstr / nil,
? recipients : [+SUIT_COSE_recipient<encid>]
]
SUIT_COSE_Encrypt0_Tagged<encid> = #6.16(SUIT_COSE_Encrypt0<encid>)
SUIT_COSE_Encrypt0<encid> = [
SUIT_COSE_Profile_Headers<encid>,
ciphertext : bstr / nil,
]
SUIT_COSE_Mac_Tagged<authid> = #6.97(SUIT_COSE_Mac<authid>)
SUIT_COSE_Mac<authid> = [
SUIT_COSE_Profile_Headers<authid>,
payload : bstr / nil,
Moran, et al. Expires 14 September 2023 [Page 8]
Internet-Draft MTI SUIT Algorithms March 2023
tag : bstr,
recipients :[+SUIT_COSE_recipient<authid>]
]
SUIT_COSE_Mac0_Tagged<authid> = #6.17(SUIT_COSE_Mac0<authid>)
SUIT_COSE_Mac0<authid> = [
SUIT_COSE_Profile_Headers<authid>,
payload : bstr / nil,
tag : bstr,
]
7. References
7.1. Normative References
[RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,
<https://www.rfc-editor.org/info/rfc8152>.
[RFC8778] Housley, R., "Use of the HSS/LMS Hash-Based Signature
Algorithm with CBOR Object Signing and Encryption (COSE)",
RFC 8778, DOI 10.17487/RFC8778, April 2020,
<https://www.rfc-editor.org/info/rfc8778>.
[RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
Structures and Process", STD 96, RFC 9052,
DOI 10.17487/RFC9052, August 2022,
<https://www.rfc-editor.org/info/rfc9052>.
7.2. Informative References
[I-D.ietf-suit-manifest]
Moran, B., Tschofenig, H., Birkholz, H., Zandberg, K., and
O. Rønningstad, "A Concise Binary Object Representation
(CBOR)-based Serialization Format for the Software Updates
for Internet of Things (SUIT) Manifest", Work in Progress,
Internet-Draft, draft-ietf-suit-manifest-22, 27 February
2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
suit-manifest-22>.
[IANA-COSE]
"CBOR Object Signing and Encryption (COSE)", 2022,
<https://www.iana.org/assignments/cose/cose.xhtml>.
Moran, et al. Expires 14 September 2023 [Page 9]
Internet-Draft MTI SUIT Algorithms March 2023
Authors' Addresses
Brendan Moran
Arm Limited
Email: brendan.moran.ietf@gmail.com
Øyvind Rønningstad
Nordic Semiconductor
Email: oyvind.ronningstad@gmail.com
Akira Tsukamoto
Email: akira.tsukamoto@gmail.com
Moran, et al. Expires 14 September 2023 [Page 10]