Skip to main content
added 572 characters in body
Source Link
periblepsis
  • 21.3k
  • 1
  • 13
  • 41

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$. And \$I_{\small{LOAD}} \le 10\cdot I_{\small{Z}}\$.

For example, suppose the zener diode is supposed to operate at about \$5\:\text{mA}\$. This means that your load should not require more than about \$50\:\text{mA}\$. That is, if you plan on using only one bipolar. You could use a Sziklai or Darlington arrangement for higher load currents.

You may also want to consider the idea of including a diode in series with the zener as a "hack" that helps with temperature compensation. You can refer to John Betten's "Compensating for diode drop variations" (originally from an EDN article) to gain some better understanding of why.

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$. And \$I_{\small{LOAD}} \le 10\cdot I_{\small{Z}}\$.

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$. And \$I_{\small{LOAD}} \le 10\cdot I_{\small{Z}}\$.

For example, suppose the zener diode is supposed to operate at about \$5\:\text{mA}\$. This means that your load should not require more than about \$50\:\text{mA}\$. That is, if you plan on using only one bipolar. You could use a Sziklai or Darlington arrangement for higher load currents.

You may also want to consider the idea of including a diode in series with the zener as a "hack" that helps with temperature compensation. You can refer to John Betten's "Compensating for diode drop variations" (originally from an EDN article) to gain some better understanding of why.

added 52 characters in body
Source Link
periblepsis
  • 21.3k
  • 1
  • 13
  • 41

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$. And \$I_{\small{LOAD}} \le 10\cdot I_{\small{Z}}\$.

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$.

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$. And \$I_{\small{LOAD}} \le 10\cdot I_{\small{Z}}\$.

Source Link
periblepsis
  • 21.3k
  • 1
  • 13
  • 41

\$R_1\$ needs to be sized so that \$I_{\small{Z}}\approx \frac{V_{\small{SRC}}-V_{\small{Z}}}{R_1}\$, where that current is specified in the datasheet for the zener. The load current will be approximately \$I_{\small{LOAD}}\approx\frac{V_{\small{Z}}-700\:\text{mV}}{R_{\small{E}}}\$. You will need to accept the fact that there will only be a compliance voltage for the load of \$\le V_{\small{SRC}}-V_{\small{Z}}\$.