This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Challenge Notebook¶
Problem: Implement a binary search tree with an insert method.¶
Constraints¶
- Can we insert None values?
- No
- Can we assume we are working with valid integers?
- Yes
- Can we assume all left descendents <= n < all right descendents?
- Yes
- Do we have to keep track of the parent nodes?
- This is optional
- Can we assume this fits in memory?
- Yes
Test Cases¶
Insert¶
Insert will be tested through the following traversal:
In-Order Traversal¶
- 5, 2, 8, 1, 3 -> 1, 2, 3, 5, 8
- 1, 2, 3, 4, 5 -> 1, 2, 3, 4, 5
If the root input is None, return a tree with the only element being the new root node.
You do not have to code the in-order traversal, it is part of the unit test.
Algorithm¶
Refer to the Solution Notebook. If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start.
Code¶
In [ ]:
class Node(object):
def __init__(self, data):
# TODO: Implement me
pass
class Bst(object):
def insert(self, data):
# TODO: Implement me
pass
Unit Test¶
The following unit test is expected to fail until you solve the challenge.
In [ ]:
%run dfs.py
In [ ]:
%run ../utils/results.py
In [ ]:
# %load test_bst.py
import unittest
class TestTree(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestTree, self).__init__()
self.results = Results()
def test_tree_one(self):
bst = Bst()
bst.insert(5)
bst.insert(2)
bst.insert(8)
bst.insert(1)
bst.insert(3)
in_order_traversal(bst.root, self.results.add_result)
self.assertEqual(str(self.results), '[1, 2, 3, 5, 8]')
self.results.clear_results()
def test_tree_two(self):
bst = Bst()
bst.insert(1)
bst.insert(2)
bst.insert(3)
bst.insert(4)
bst.insert(5)
in_order_traversal(bst.root, self.results.add_result)
self.assertEqual(str(self.results), '[1, 2, 3, 4, 5]')
print('Success: test_tree')
def main():
test = TestTree()
test.test_tree_one()
test.test_tree_two()
if __name__ == '__main__':
main()
Solution Notebook¶
Review the Solution Notebook for a discussion on algorithms and code solutions.