This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Solution Notebook¶
Problem: Determine the height of a tree.¶
Constraints¶
- Is this a binary tree?
- Yes
- Can we assume we already have a Node class with an insert method?
- Yes
- Can we assume this fits memory?
- Yes
Test Cases¶
- 5 -> 1
- 5, 2, 8, 1, 3 -> 3
Algorithm¶
We'll use a recursive algorithm.
- If the current node is None, return 0
- Else, return 1 + the maximum height of the left or right children
Complexity:
- Time: O(n)
- Space: O(h), where h is the height of the tree
Code¶
In [1]:
%run ../bst/bst.py
In [2]:
class BstHeight(Bst):
def height(self, node):
if node is None:
return 0
return 1 + max(self.height(node.left),
self.height(node.right))
Unit Test¶
In [3]:
%%writefile test_height.py
import unittest
class TestHeight(unittest.TestCase):
def test_height(self):
bst = BstHeight(Node(5))
self.assertEqual(bst.height(bst.root), 1)
bst.insert(2)
bst.insert(8)
bst.insert(1)
bst.insert(3)
self.assertEqual(bst.height(bst.root), 3)
print('Success: test_height')
def main():
test = TestHeight()
test.test_height()
if __name__ == '__main__':
main()
Overwriting test_height.py
In [4]:
%run -i test_height.py
Success: test_height