This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Solution Notebook¶
Problem: Determine if a number is a power of two.¶
Constraints¶
- Is the input number an int?
- Yes
- Can we assume the inputs are valid?
- No
- Is the output a boolean?
- Yes
- Can we assume this fits memory?
- Yes
Test Cases¶
- None -> TypeError
- 0 -> False
- 1 -> True
- 2 -> True
- 15 -> False
- 16 -> True
Algorithm¶
We can use bit manipulation to determine if a number is a power of two.
For a number to be a power of two, there must only be one bit that is a 1.
We can use the following bit manipulation trick to determine this:
n & (n - 1)
Here's an example why:
0000 1000 = n 0000 0001 = 1 0000 0111 = n-1 0000 1000 = n 0000 0111 = n-1 0000 0000 = n & n-1, result = 0
Complexity:
- Time: O(1)
- Space: O(1)
Code¶
In [1]:
class Solution(object):
def is_power_of_two(self, n):
if n is None:
raise TypeError('n cannot be None')
if n <= 0:
return False
return (n & (n - 1)) == 0
Unit Test¶
In [2]:
%%writefile test_is_power_of_two.py
import unittest
class TestSolution(unittest.TestCase):
def test_is_power_of_two(self):
solution = Solution()
self.assertRaises(TypeError, solution.is_power_of_two, None)
self.assertEqual(solution.is_power_of_two(0), False)
self.assertEqual(solution.is_power_of_two(1), True)
self.assertEqual(solution.is_power_of_two(2), True)
self.assertEqual(solution.is_power_of_two(15), False)
self.assertEqual(solution.is_power_of_two(16), True)
print('Success: test_is_power_of_two')
def main():
test = TestSolution()
test.test_is_power_of_two()
if __name__ == '__main__':
main()
Overwriting test_is_power_of_two.py
In [3]:
%run -i test_is_power_of_two.py
Success: test_is_power_of_two