This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Challenge Notebook¶
Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine which items to select to maximize total value.¶
Constraints¶
- Can we replace the items once they are placed in the knapsack?
- No, this is the 0/1 knapsack problem
- Can we split an item?
- No
- Can we get an input item with weight of 0 or value of 0?
- No
- Can we assume the inputs are valid?
- No
- Are the inputs in sorted order by val/weight?
- Yes, if not we'd need to sort them first
- Can we assume this fits memory?
- Yes
Test Cases¶
- items or total weight is None -> Exception
- items or total weight is 0 -> 0
- General case
total_weight = 8 items v | w 0 | 0 a 2 | 2 b 4 | 2 c 6 | 4 d 9 | 5 max value = 13 items v | w b 4 | 2 d 9 | 5
Algorithm¶
Refer to the Solution Notebook. If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start.
Code¶
In [ ]:
class Item(object):
def __init__(self, label, value, weight):
self.label = label
self.value = value
self.weight = weight
def __repr__(self):
return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)
In [ ]:
class Knapsack(object):
def fill_knapsack(self, input_items, total_weight):
# TODO: Implement me
pass
Unit Test¶
The following unit test is expected to fail until you solve the challenge.
In [ ]:
# %load test_knapsack.py
import unittest
class TestKnapsack(unittest.TestCase):
def test_knapsack_bottom_up(self):
knapsack = Knapsack()
self.assertRaises(TypeError, knapsack.fill_knapsack, None, None)
self.assertEqual(knapsack.fill_knapsack(0, 0), 0)
items = []
items.append(Item(label='a', value=2, weight=2))
items.append(Item(label='b', value=4, weight=2))
items.append(Item(label='c', value=6, weight=4))
items.append(Item(label='d', value=9, weight=5))
total_weight = 8
expected_value = 13
results = knapsack.fill_knapsack(items, total_weight)
self.assertEqual(results[0].label, 'd')
self.assertEqual(results[1].label, 'b')
total_value = 0
for item in results:
total_value += item.value
self.assertEqual(total_value, expected_value)
print('Success: test_knapsack_bottom_up')
def test_knapsack_top_down(self):
knapsack = KnapsackTopDown()
self.assertRaises(TypeError, knapsack.fill_knapsack, None, None)
self.assertEqual(knapsack.fill_knapsack(0, 0), 0)
items = []
items.append(Item(label='a', value=2, weight=2))
items.append(Item(label='b', value=4, weight=2))
items.append(Item(label='c', value=6, weight=4))
items.append(Item(label='d', value=9, weight=5))
total_weight = 8
expected_value = 13
self.assertEqual(knapsack.fill_knapsack(items, total_weight), expected_value)
print('Success: test_knapsack_top_down')
def main():
test = TestKnapsack()
test.test_knapsack_bottom_up()
test.test_knapsack_top_down()
if __name__ == '__main__':
main()
Solution Notebook¶
Review the Solution Notebook for a discussion on algorithms and code solutions.