This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Solution Notebook¶
Problem: Return all subsets of a set.¶
Constraints¶
- Should the resulting subsets be unique?
- Yes, treat 'ab' and 'bc' as the same
- Is the empty set included as a subset?
- Yes
- Are the inputs unique?
- No
- Can we assume the inputs are valid?
- No
- Can we assume this fits memory?
- Yes
Test Cases¶
* None -> None
* '' -> ['']
* 'a' -> ['a', '']
* 'ab' -> ['a', 'ab', 'b', '']
* 'abc' -> ['a', 'ab', 'abc', 'ac',
'b', 'bc', 'c', '']
* 'aabc' -> ['a', 'aa', 'aab', 'aabc',
'aac', 'ab', 'abc', 'ac',
'b', 'bc', 'c', '']
Algorithm¶
- Build a dictionary of {chars: counts} where counts is the number of times each char is found in the input
- Loop through each item in the dictionary
- Keep track of the current index (first item will have current index 0)
- If the char's count is 0, continue
- Decrement the current char's count in the dictionary
- Add the current char to the current results
- Add the current result to the results
- Recurse, passing in the current index as the new starting point index
- When we recurse, we'll check if current index < starting point index, and if so, continue
- This avoids duplicate results such as 'ab' and 'bc'
- Backtrack by:
- Removing the just added current char from the current results
- Incrementing the current char's count in the dictionary
Complexity:
- Time: O(2^n)
- Space: O(2^n) if we are saving each result, or O(n) if we are just printing each result
We are doubling the number of operations every time we add an element to the results: O(2^n).
Note, you could also use the following method to solve this problem:
number binary subset
0 000 {}
1 001 {c}
2 010 {b}
3 011 {b,c}
4 100 {a}
5 101 {a,c}
6 110 {a,b}
7 111 {a,b,c}
Code¶
In [1]:
from collections import OrderedDict
class Combinatoric(object):
def _build_counts_map(self, string):
counts_map = OrderedDict()
for char in string:
if char in counts_map:
counts_map[char] += 1
else:
counts_map[char] = 1
return counts_map
def find_power_set(self, string):
if string is None:
return string
if string == '':
return ['']
counts_map = self._build_counts_map(string)
curr_results = []
results = []
self._find_power_set(counts_map, curr_results,
results, index=0)
results.append('')
return results
def _find_power_set(self, counts_map, curr_result,
results, index):
for curr_index, char in enumerate(counts_map):
if curr_index < index or counts_map[char] == 0:
continue
curr_result.append(char)
counts_map[char] -= 1
results.append(''.join(curr_result))
self._find_power_set(counts_map, curr_result,
results, curr_index)
counts_map[char] += 1
curr_result.pop()
Unit Test¶
In [2]:
%%writefile test_power_set.py
import unittest
class TestPowerSet(unittest.TestCase):
def test_power_set(self):
input_set = ''
expected = ['']
self.run_test(input_set, expected)
input_set = 'a'
expected = ['a', '']
self.run_test(input_set, expected)
input_set = 'ab'
expected = ['a', 'ab', 'b', '']
self.run_test(input_set, expected)
input_set = 'abc'
expected = ['a', 'ab', 'abc', 'ac',
'b', 'bc', 'c', '']
self.run_test(input_set, expected)
input_set = 'aabc'
expected = ['a', 'aa', 'aab', 'aabc',
'aac', 'ab', 'abc', 'ac',
'b', 'bc', 'c', '']
self.run_test(input_set, expected)
print('Success: test_power_set')
def run_test(self, input_set, expected):
combinatoric = Combinatoric()
result = combinatoric.find_power_set(input_set)
self.assertEqual(result, expected)
def main():
test = TestPowerSet()
test.test_power_set()
if __name__ == '__main__':
main()
Overwriting test_power_set.py
In [3]:
%run -i test_power_set.py
Success: test_power_set