Instead of speculating about what may or may not happen, let's just look, shall we? I'll have to use C++ since I don't have a C# compiler handy (though see the C# example from VisualMelon), but I'm sure the same principles apply regardless.
We'll include the two alternatives you encountered in the interview. We'll also include a version that uses abs as suggested by some of the answers.
#include <cstdlib>
bool IsSumInRangeWithVar(int a, int b)
{
int s = a + b;
if (s > 1000 || s < -1000) return false;
else return true;
}
bool IsSumInRangeWithoutVar(int a, int b)
{
if (a + b > 1000 || a + b < -1000) return false;
else return true;
}
bool IsSumInRangeSuperOptimized(int a, int b) {
return (abs(a + b) < 1000);
}
Now compile it with no optimization whatsoever: g++ -c -o test.o test.cpp
Now we can see precisely what this generates: objdump -d test.o
0000000000000000 <_Z19IsSumInRangeWithVarii>:
0: 55 push %rbp # begin a call frame
1: 48 89 e5 mov %rsp,%rbp
4: 89 7d ec mov %edi,-0x14(%rbp) # save first argument (a) on stack
7: 89 75 e8 mov %esi,-0x18(%rbp) # save b on stack
a: 8b 55 ec mov -0x14(%rbp),%edx # load a and b into edx
d: 8b 45 e8 mov -0x18(%rbp),%eax # load b into eax
10: 01 d0 add %edx,%eax # add a and b
12: 89 45 fc mov %eax,-0x4(%rbp) # save result as s on stack
15: 81 7d fc e8 03 00 00 cmpl $0x3e8,-0x4(%rbp) # compare s to 1000
1c: 7f 09 jg 27 # jump to 27 if it's greater
1e: 81 7d fc 18 fc ff ff cmpl $0xfffffc18,-0x4(%rbp) # compare s to -1000
25: 7d 07 jge 2e # jump to 2e if it's greater or equal
27: b8 00 00 00 00 mov $0x0,%eax # put 0 (false) in eax, which will be the return value
2c: eb 05 jmp 33 <_Z19IsSumInRangeWithVarii+0x33>
2e: b8 01 00 00 00 mov $0x1,%eax # put 1 (true) in eax
33: 5d pop %rbp
34: c3 retq
0000000000000035 <_Z22IsSumInRangeWithoutVarii>:
35: 55 push %rbp
36: 48 89 e5 mov %rsp,%rbp
39: 89 7d fc mov %edi,-0x4(%rbp)
3c: 89 75 f8 mov %esi,-0x8(%rbp)
3f: 8b 55 fc mov -0x4(%rbp),%edx
42: 8b 45 f8 mov -0x8(%rbp),%eax # same as before
45: 01 d0 add %edx,%eax
# note: unlike other implementation, result is not saved
47: 3d e8 03 00 00 cmp $0x3e8,%eax # compare to 1000
4c: 7f 0f jg 5d <_Z22IsSumInRangeWithoutVarii+0x28>
4e: 8b 55 fc mov -0x4(%rbp),%edx # since s wasn't saved, load a and b from the stack again
51: 8b 45 f8 mov -0x8(%rbp),%eax
54: 01 d0 add %edx,%eax
56: 3d 18 fc ff ff cmp $0xfffffc18,%eax # compare to -1000
5b: 7d 07 jge 64 <_Z22IsSumInRangeWithoutVarii+0x2f>
5d: b8 00 00 00 00 mov $0x0,%eax
62: eb 05 jmp 69 <_Z22IsSumInRangeWithoutVarii+0x34>
64: b8 01 00 00 00 mov $0x1,%eax
69: 5d pop %rbp
6a: c3 retq
000000000000006b <_Z26IsSumInRangeSuperOptimizedii>:
6b: 55 push %rbp
6c: 48 89 e5 mov %rsp,%rbp
6f: 89 7d fc mov %edi,-0x4(%rbp)
72: 89 75 f8 mov %esi,-0x8(%rbp)
75: 8b 55 fc mov -0x4(%rbp),%edx
78: 8b 45 f8 mov -0x8(%rbp),%eax
7b: 01 d0 add %edx,%eax
7d: 3d 18 fc ff ff cmp $0xfffffc18,%eax
82: 7c 16 jl 9a <_Z26IsSumInRangeSuperOptimizedii+0x2f>
84: 8b 55 fc mov -0x4(%rbp),%edx
87: 8b 45 f8 mov -0x8(%rbp),%eax
8a: 01 d0 add %edx,%eax
8c: 3d e8 03 00 00 cmp $0x3e8,%eax
91: 7f 07 jg 9a <_Z26IsSumInRangeSuperOptimizedii+0x2f>
93: b8 01 00 00 00 mov $0x1,%eax
98: eb 05 jmp 9f <_Z26IsSumInRangeSuperOptimizedii+0x34>
9a: b8 00 00 00 00 mov $0x0,%eax
9f: 5d pop %rbp
a0: c3 retq
We can see from the stack addresses (for example, the -0x4 in mov %edi,-0x4(%rbp) versus the -0x14 in mov %edi,-0x14(%rbp)) that IsSumInRangeWithVar() uses 16 extra bytes on the stack.
Because IsSumInRangeWithoutVar() allocates no space on the stack to store the intermediate value s it has to recalculate it, resulting in this implementation being 2 instructions longer.
Funny, IsSumInRangeSuperOptimized() looks a lot like IsSumInRangeWithoutVar(), except it compares to -1000 first, and 1000 second.
Now let's compile with only the most basic optimizations: g++ -O1 -c -o test.o test.cpp. The result:
0000000000000000 <_Z19IsSumInRangeWithVarii>:
0: 8d 84 37 e8 03 00 00 lea 0x3e8(%rdi,%rsi,1),%eax
7: 3d d0 07 00 00 cmp $0x7d0,%eax
c: 0f 96 c0 setbe %al
f: c3 retq
0000000000000010 <_Z22IsSumInRangeWithoutVarii>:
10: 8d 84 37 e8 03 00 00 lea 0x3e8(%rdi,%rsi,1),%eax
17: 3d d0 07 00 00 cmp $0x7d0,%eax
1c: 0f 96 c0 setbe %al
1f: c3 retq
0000000000000020 <_Z26IsSumInRangeSuperOptimizedii>:
20: 8d 84 37 e8 03 00 00 lea 0x3e8(%rdi,%rsi,1),%eax
27: 3d d0 07 00 00 cmp $0x7d0,%eax
2c: 0f 96 c0 setbe %al
2f: c3 retq
Would you look at that: each variant is identical. The compiler is able to do something quite clever: abs(a + b) <= 1000 is equivalent to a + b + 1000 <= 2000 considering setbe does an unsigned comparison, so a negative number becomes a very large positive number. The lea instruction can actually perform all these additions in one instruction, and eliminate all the conditional branches.
To answer your question, almost always the thing to optimize for is not memory or speed, but readability. Reading code is a lot harder than writing it, and reading code that's been mangled to "optimize" it is a lot harder than reading code that's been written to be clear. More often than not, these "optimizations" have negligible, or as in this case exactly zero actual impact on performance.