Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

pip install [-e] .

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate("a * b - 4.1 * a > 2.5 * b")   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Free-threading support

Starting on CPython 3.13 onwards there is a new distribution that disables the Global Interpreter Lock (GIL) altogether, thus increasing the performance yields under multi-threaded conditions on a single interpreter, as opposed to having to use multiprocessing.

Whilst numexpr has been demonstrated to work under free-threaded CPython, considerations need to be taken when using numexpr native parallel implementation vs using Python threads directly in order to prevent oversubscription, we recommend either using the main CPython interpreter thread to spawn multiple C threads using the parallel numexpr API, or spawning multiple CPython threads that do not use the parallel API.

For more information about free-threaded CPython, we recommend visiting the following community Wiki <https://py-free-threading.github.io/>

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.14.1.tar.gz (119.4 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numexpr-2.14.1-cp314-cp314t-win_amd64.whl (163.6 kB view details)

Uploaded CPython 3.14tWindows x86-64

numexpr-2.14.1-cp314-cp314t-win32.whl (169.5 kB view details)

Uploaded CPython 3.14tWindows x86

numexpr-2.14.1-cp314-cp314t-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp314-cp314t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (457.1 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (466.2 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp314-cp314t-macosx_11_0_arm64.whl (152.9 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

numexpr-2.14.1-cp314-cp314t-macosx_10_13_x86_64.whl (163.5 kB view details)

Uploaded CPython 3.14tmacOS 10.13+ x86-64

numexpr-2.14.1-cp314-cp314-win_amd64.whl (162.6 kB view details)

Uploaded CPython 3.14Windows x86-64

numexpr-2.14.1-cp314-cp314-win32.whl (168.8 kB view details)

Uploaded CPython 3.14Windows x86

numexpr-2.14.1-cp314-cp314-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp314-cp314-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (446.5 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (455.9 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp314-cp314-macosx_11_0_arm64.whl (152.3 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

numexpr-2.14.1-cp314-cp314-macosx_10_13_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

numexpr-2.14.1-cp313-cp313t-win_amd64.whl (161.1 kB view details)

Uploaded CPython 3.13tWindows x86-64

numexpr-2.14.1-cp313-cp313t-win32.whl (167.7 kB view details)

Uploaded CPython 3.13tWindows x86

numexpr-2.14.1-cp313-cp313t-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp313-cp313t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (457.0 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (466.0 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp313-cp313t-macosx_11_0_arm64.whl (152.9 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numexpr-2.14.1-cp313-cp313t-macosx_10_13_x86_64.whl (163.5 kB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numexpr-2.14.1-cp313-cp313-win_amd64.whl (160.2 kB view details)

Uploaded CPython 3.13Windows x86-64

numexpr-2.14.1-cp313-cp313-win32.whl (167.0 kB view details)

Uploaded CPython 3.13Windows x86

numexpr-2.14.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp313-cp313-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (446.6 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (455.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp313-cp313-macosx_11_0_arm64.whl (152.2 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numexpr-2.14.1-cp313-cp313-macosx_10_13_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numexpr-2.14.1-cp312-cp312-win_amd64.whl (160.2 kB view details)

Uploaded CPython 3.12Windows x86-64

numexpr-2.14.1-cp312-cp312-win32.whl (167.0 kB view details)

Uploaded CPython 3.12Windows x86

numexpr-2.14.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp312-cp312-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (443.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (452.5 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp312-cp312-macosx_11_0_arm64.whl (152.2 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numexpr-2.14.1-cp312-cp312-macosx_10_13_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numexpr-2.14.1-cp311-cp311-win_amd64.whl (160.1 kB view details)

Uploaded CPython 3.11Windows x86-64

numexpr-2.14.1-cp311-cp311-win32.whl (166.8 kB view details)

Uploaded CPython 3.11Windows x86

numexpr-2.14.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp311-cp311-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (442.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (451.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp311-cp311-macosx_11_0_arm64.whl (152.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numexpr-2.14.1-cp311-cp311-macosx_10_9_x86_64.whl (163.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numexpr-2.14.1-cp310-cp310-win_amd64.whl (160.1 kB view details)

Uploaded CPython 3.10Windows x86-64

numexpr-2.14.1-cp310-cp310-win32.whl (166.8 kB view details)

Uploaded CPython 3.10Windows x86

numexpr-2.14.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

numexpr-2.14.1-cp310-cp310-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

numexpr-2.14.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (440.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.14.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (449.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.14.1-cp310-cp310-macosx_11_0_arm64.whl (152.1 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numexpr-2.14.1-cp310-cp310-macosx_10_9_x86_64.whl (163.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file numexpr-2.14.1.tar.gz.

File metadata

  • Download URL: numexpr-2.14.1.tar.gz
  • Upload date:
  • Size: 119.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1.tar.gz
Algorithm Hash digest
SHA256 4be00b1086c7b7a5c32e31558122b7b80243fe098579b170967da83f3152b48b
MD5 38af08266a6bc73c0d548033d8a6548c
BLAKE2b-256 cb2ffdba158c9dbe5caca9c3eca3eaffffb251f2fb8674bf8e2d0aed5f38d319

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 163.6 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 a40b350cd45b4446076fa11843fa32bbe07024747aeddf6d467290bf9011b392
MD5 8d12ce59a6eefcd6019e808b6834beed
BLAKE2b-256 41a25a1a2c72528b429337f49911b18c302ecd36eeab00f409147e1aa4ae4519

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 169.5 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 538961096c2300ea44240209181e31fae82759d26b51713b589332b9f2a4117e
MD5 2526dc1fe525498af0c94a2272e6dc6a
BLAKE2b-256 d44a33044878c8f4a75213cfe9c11d4c02058bb710a7a063fe14f362e8de1077

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 790447be6879a6c51b9545f79612d24c9ea0a41d537a84e15e6a8ddef0b6268e
MD5 d03ce4134c406be14285ac258e26897e
BLAKE2b-256 77c40519ab028fdc35e3e7ee700def7f2b4631b175cd9e1202bd7966c1695c33

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edea2f20c2040df8b54ee8ca8ebda63de9545b2112872466118e9df4d0ae99f3
MD5 b717bd730e7f1a10d4ed651d89136a5a
BLAKE2b-256 fdbb797b583b5fb9da5700a5708ca6eb4f889c94d81abb28de4d642c0f4b3258

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 70d80fcb418a54ca208e9a38e58ddc425c07f66485176b261d9a67c7f2864f73
MD5 1614e9c96eb7c8ed56e4c72877d7ffb9
BLAKE2b-256 d6ddabe848678d82486940892f2cacf39e82eec790e8930d4d713d3f9191063b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dd72d8c2a165fe45ea7650b16eb8cc1792a94a722022006bb97c86fe51fd2091
MD5 0660c3303ab262d4f5718a4d81b19591
BLAKE2b-256 9ed3956a13e628d722d649fbf2fded615134a308c082e122a48bad0e90a99ce9

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e87f6d203ac57239de32261c941e9748f9309cbc0da6295eabd0c438b920d3a
MD5 5d7501f821bc93af33291f457e825a38
BLAKE2b-256 0d77048f30dcf661a3d52963a88c29b52b6d5ce996d38e9313a56a922451c1e0

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ec368819502b64f190c3f71be14a304780b5935c42aae5bf22c27cc2cbba70b5
MD5 4b44a31888018abaaa6b28a36d1dfb09
BLAKE2b-256 7fd6ec947806bb57836d6379a8c8a253c2aeaa602b12fef2336bfd2462bb4ed5

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 162.6 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 587c41509bc373dfb1fe6086ba55a73147297247bedb6d588cda69169fc412f2
MD5 79f73e1d51118c24c2af6cdb8e2bfe7b
BLAKE2b-256 4f3ed83e9401a1c3449a124f7d4b3fb44084798e0d30f7c11e60712d9b94cf11

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp314-cp314-win32.whl
  • Upload date:
  • Size: 168.8 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 1f1a5e817c534539351aa75d26088e9e1e0ef1b3a6ab484047618a652ccc4fc3
MD5 0582c13b65373a7d8dbfb7c610c697b0
BLAKE2b-256 5d21204db708eccd71aa8bc55bcad55bc0fc6c5a4e01ad78e14ee5714a749386

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 44f84e0e5af219dbb62a081606156420815890e041b87252fbcea5df55214c4c
MD5 2f84fabfefea00436d6ed4696dda629b
BLAKE2b-256 452d9b5764d0eafbbb2889288f80de773791358acf6fad1a55767538d8b79599

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e23b87f744e04e302d82ac5e2189ae20a533566aec76a46885376e20b0645bf8
MD5 003732d9207ff719c1718ecfd00852d2
BLAKE2b-256 9afb7ceb9ee55b5f67e4a3e4d73d5af4c7e37e3c9f37f54bee90361b64b17e3f

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 439ec4d57b853792ebe5456e3160312281c3a7071ecac5532ded3278ede614de
MD5 6ba6d11212e075db3ebe1ff2330412c3
BLAKE2b-256 88e13db65117f02cdefb0e5e4c440daf1c30beb45051b7f47aded25b7f4f2f34

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5aedf38d4c0c19d3cecfe0334c3f4099fb496f54c146223d30fa930084bc8574
MD5 a1518c57ca1b68713e7a7b7d2b91d886
BLAKE2b-256 9aedaabd8678077848dd9a751c5558c2057839f5a09e2a176d8dfcd0850ee00e

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2eac7a5a2f70b3768c67056445d1ceb4ecd9b853c8eda9563823b551aeaa5082
MD5 9884bb34fc844a48a17fe5ec174752e3
BLAKE2b-256 13c1a5c78ae637402c5550e2e0ba175275d2515d432ec28af0cdc23c9b476e65

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ede79f7ff06629f599081de644546ce7324f1581c09b0ac174da88a470d39c21
MD5 4f310e8406cffecffbcebfb4311202c5
BLAKE2b-256 ac369db78dfbfdfa1f8bf0872993f1a334cdd8fca5a5b6567e47dcb128bcb7c2

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 161.1 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 94c711f6d8f17dfb4606842b403699603aa591ab9f6bf23038b488ea9cfb0f09
MD5 fbf40fd8315c8951690c4c42b447933a
BLAKE2b-256 8699ee3accc589ed032eea68e12172515ed96a5568534c213ad109e1f4411df1

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 167.7 kB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 15015d47d3d1487072d58c0e7682ef2eb608321e14099c39d52e2dd689483611
MD5 e55a1d4014e3ba09d9de984652fb83d3
BLAKE2b-256 b747b2a93cbdb3ba4e009728ad1b9ef1550e2655ea2c86958ebaf03b9615f275

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 67ea4771029ce818573b1998f5ca416bd255156feea017841b86176a938f7d19
MD5 3d834426d1c43b80bbe0f8aa80793c9a
BLAKE2b-256 1ece0d4fcd31ab49319740d934fba1734d7dad13aa485532ca754e555ca16c8b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6e575fd3ad41ddf3355d0c7ef6bd0168619dc1779a98fe46693cad5e95d25e6e
MD5 b78918e583056f013648cf4d74b351e9
BLAKE2b-256 6d399b8bc6e294d85cbb54a634e47b833e9f3276a8bdf7ce92aa808718a0212d

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 83647d846d3eeeb9a9255311236135286728b398d0d41d35dedb532dca807fe9
MD5 393960f2be1f33b7e759601f838bfb01
BLAKE2b-256 35819ee5f69b811e8f18746c12d6f71848617684edd3161927f95eee7a305631

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 33265294376e7e2ae4d264d75b798a915d2acf37b9dd2b9405e8b04f84d05cfc
MD5 8f304812a0553a1af137a06b58be829b
BLAKE2b-256 84783c8335f713d4aeb99fa758d7c62f0be1482d4947ce5b508e2052bb7aeee9

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af111c8fe6fc55d15e4c7cab11920fc50740d913636d486545b080192cd0ad73
MD5 43f9756a767f1febfef2e70b1d185a53
BLAKE2b-256 586579d592d5e63fbfab3b59a60c386853d9186a44a3fa3c87ba26bdc25b6195

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 557887ad7f5d3c2a40fd7310e50597045a68e66b20a77b3f44d7bc7608523b4b
MD5 ff34dc5b421ad6c2baecfd99ff4981ff
BLAKE2b-256 f3767aac965fd93a56803cbe502aee2adcad667253ae34b0badf6c5af7908b6c

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 160.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9fdcd4735121658a313f878fd31136d1bfc6a5b913219e7274e9fca9f8dac3bb
MD5 67a840dbe7c39dc3f911d881c1a059ab
BLAKE2b-256 cc239281bceaeb282cead95f0aa5f7f222ffc895670ea689cc1398355f6e3001

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 167.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 638dce8320f4a1483d5ca4fda69f60a70ed7e66be6e68bc23fb9f1a6b78a9e3b
MD5 d2d981e6f53bbe8fc32aa5026520ae75
BLAKE2b-256 245dcbeb67aca0c5a76ead13df7e8bd8dd5e0d49145f90da697ba1d9f07005b0

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a4ba71db47ea99c659d88ee6233fa77b6dc83392f1d324e0c90ddf617ae3f421
MD5 6bd02f104e7b2eeaa20599ca4b10e905
BLAKE2b-256 ea056bddac9f18598ba94281e27a6943093f7d0976544b0cb5d92272c64719bd

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c5f1b1605695778896534dfc6e130d54a65cd52be7ed2cd0cfee3981fd676bf5
MD5 024913df22a44396cac1a5717049a545
BLAKE2b-256 b6998d3879c4d67d3db5560cf2de65ce1778b80b75f6fa415eb5c3e7bd37ba27

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 05f9366d23a2e991fd5a8b5e61a17558f028ba86158a4552f8f239b005cdf83c
MD5 b1c3a5f9eb2766f201224bb6507267d9
BLAKE2b-256 fcf9c9457652dfe28e2eb898372da2fe786c6db81af9540c0f853ee04a0699cc

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 06855053de7a3a8425429bd996e8ae3c50b57637ad3e757e0fa0602a7874be30
MD5 a66e5879bcb2ae9d2767dd7239b5d57b
BLAKE2b-256 136572b065f9c75baf8f474fd5d2b768350935989d4917db1c6c75b866d4067c

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dce0b5a0447baa7b44bc218ec2d7dcd175b8eee6083605293349c0c1d9b82fb6
MD5 10f11dd0f6fe096be9720d51436151a9
BLAKE2b-256 35aed58558d8043de0c49f385ea2fa789e3cfe4d436c96be80200c5292f45f15

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 09078ba73cffe94745abfbcc2d81ab8b4b4e9d7bfbbde6cac2ee5dbf38eee222
MD5 991f66015da96e066399006c968d5d8b
BLAKE2b-256 73b49f6d637fd79df42be1be29ee7ba1f050fab63b7182cb922a0e08adc12320

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 160.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fdd886f4b7dbaf167633ee396478f0d0aa58ea2f9e7ccc3c6431019623e8d68f
MD5 1f181311e9855d2196cb052cdd57d03a
BLAKE2b-256 1f67ffe750b5452eb66de788c34e7d21ec6d886abb4d7c43ad1dc88ceb3d998f

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 167.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 36f8d5c1bd1355df93b43d766790f9046cccfc1e32b7c6163f75bcde682cda07
MD5 7cd9e03d38314bd8f83606a35704fbb5
BLAKE2b-256 319f203d82b9e39dadd91d64bca55b3c8ca432e981b822468dcef41a4418626b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9f9137f1351b310436662b5dc6f4082a245efa8950c3b0d9008028df92fefb9b
MD5 50d7522b9aed894499ae1bf49ff0580b
BLAKE2b-256 0ebb1ccc9dcaf46281568ce769888bf16294c40e98a5158e4b16c241de31d0d3

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3a2839efa25f3c8d4133252ea7342d8f81226c7c4dda81f97a57e090b9d87a48
MD5 87fe48007cd908a81a155bb96020e7d0
BLAKE2b-256 7b6c78f83b6219f61c2c22d71ab6e6c2d4e5d7381334c6c29b77204e59edb039

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eee6d4fbbbc368e6cdd0772734d6249128d957b3b8ad47a100789009f4de7083
MD5 c42d26335163ac40daff823f96e0dcbe
BLAKE2b-256 d943560e9ba23c02c904b5934496486d061bcb14cd3ebba2e3cf0e2dccb6c22b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d686dfb2c1382d9e6e0ee0b7647f943c1886dba3adbf606c625479f35f1956c1
MD5 d93eb0939a2c3b507f9f7f1f33cd847c
BLAKE2b-256 7294cc921e35593b820521e464cbbeaf8212bbdb07f16dc79fe283168df38195

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47041f2f7b9e69498fb311af672ba914a60e6e6d804011caacb17d66f639e659
MD5 596f1985f5a107b65670156e4de5bb2d
BLAKE2b-256 4593b6760dd1904c2a498e5f43d1bb436f59383c3ddea3815f1461dfaa259373

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 91ebae0ab18c799b0e6b8c5a8d11e1fa3848eb4011271d99848b297468a39430
MD5 7bdbbd83f7b18034cd000ee38f6e3662
BLAKE2b-256 9d20c473fc04a371f5e2f8c5749e04505c13e7a8ede27c09e9f099b2ad6f43d6

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 160.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e9b2f957798c67a2428be96b04bce85439bed05efe78eb78e4c2ca43737578e7
MD5 9c9b157845d5e4c713350f9e6521843e
BLAKE2b-256 64724ca9bd97b2eb6dce9f5e70a3b6acec1a93e1fb9b079cb4cba2cdfbbf295d

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 166.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 db78fa0c9fcbaded3ae7453faf060bd7a18b0dc10299d7fcd02d9362be1213ed
MD5 edd8ae2bbeb21d682bdccb4b654057b5
BLAKE2b-256 d0b2ddcf0ac6cf0a1d605e5aecd4281507fd79a9628a67896795ab2e975de5df

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 03130afa04edf83a7b590d207444f05a00363c9b9ea5d81c0f53b1ea13fad55a
MD5 ff62989202d8d272dd8039386f9ee55a
BLAKE2b-256 e733b33b8fdc032a05d9ebb44a51bfcd4b92c178a2572cd3e6c1b03d8a4b45b2

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d08856cfc1b440eb1caaa60515235369654321995dd68eb9377577392020f6cb
MD5 6a67e7acf2641d7578d38be9de5a60d3
BLAKE2b-256 66b1be4ce99bff769a5003baddac103f34681997b31d4640d5a75c0e8ed59c78

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2a381e5e919a745c9503bcefffc1c7f98c972c04ec58fc8e999ed1a929e01ba6
MD5 7868de1485070455e89fbc17b984c70e
BLAKE2b-256 4c1aedbe839109518364ac0bd9e918cf874c755bb2c128040e920f198c494263

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ebe4980f9494b9f94d10d2e526edc29e72516698d3bf95670ba79415492212a4
MD5 d8976db93974fa1f65a6930e34cec051
BLAKE2b-256 0e7f3bae417cb13ae08afd86d08bb0301c32440fe0cae4e6262b530e0819aeda

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2773ee1133f77009a1fc2f34fe236f3d9823779f5f75450e183137d49f00499f
MD5 cb1c9bcf38244cb82d7c347fa25118e0
BLAKE2b-256 2595d64f680ea1fc56d165457287e0851d6708800f9fcea346fc1b9957942ee6

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d03fcb4644a12f70a14d74006f72662824da5b6128bf1bcd10cc3ed80e64c34
MD5 a0f69c6e9d7b6ffb1aa86ca0a5bccd37
BLAKE2b-256 b2a367999bdd1ed1f938d38f3fedd4969632f2f197b090e50505f7cc1fa82510

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 160.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 823cd82c8e7937981339f634e7a9c6a92cb2d0b9d0a5cf627a5e394fffc05377
MD5 e1c3673742449bca09465099896bc1bd
BLAKE2b-256 18af26773a246716922794388786529e5640676399efabb0ee217ce034df9d27

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.14.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 166.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0d1dcbdc4d0374c0d523cee2f94f06b001623cbc1fd163612841017a3495427c
MD5 f5cbd2d43b280cf42c66ccbb51db82b6
BLAKE2b-256 c4c5bdd1862302bb71a78dba941eaf7060e1274f1cf6af2d1b0f1880bfcb289b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 76db0bc6267e591ab9c4df405ffb533598e4c88239db7338d11ae9e4b368a85a
MD5 78966121bd14419c7097c7730d4fe8cf
BLAKE2b-256 0872a58ddc05e0eabb3fa8d3fcd319f3d97870e6b41520832acfd04a6734c2c0

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 dde9fa47ed319e1e1728940a539df3cb78326b7754bc7c6ab3152afc91808f9b
MD5 dcf780a80859234b72b88e0a08b9a0b5
BLAKE2b-256 acc8fa85f0cc5c39db587ba4927b862a92477c017ee8476e415e8120a100457b

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 75440c54fc01e130396650fdf307aa9d41a67dc06ddbfb288971b591c13a395b
MD5 4e8b1d8776655f8e9886a31ede8e0504
BLAKE2b-256 34d4d1a410901c620f7a6a3c5c2b1fc9dab22170be05a89d2c02ae699e27bd3f

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 955c92b064f9074d2970cf3138f5e3b965be673b82024962ed526f39bc25a920
MD5 119473b3d1ec9b73f8eb453567b5c459
BLAKE2b-256 28c2c5775541256c4bf16b4d88fa1cffa74a0126703e513093c8774d911b0bb7

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64ae5dfd62d74a3ef82fe0b37f80527247f3626171ad82025900f46ffca4b39a
MD5 1c72b6a48fa336e148105a694d77a25d
BLAKE2b-256 f3896b07977baf2af75fb6692f9e7a1fb612a15f600fc921f3f565366de01f4a

See more details on using hashes here.

File details

Details for the file numexpr-2.14.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.14.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0fab3fd06a04f6b86102552b26aa5d85e20ac7d8296c15764c726eeabae6cc8
MD5 9b206d6de6154344638609efa75b2935
BLAKE2b-256 db91ccd504cbe5b88d06987c77f42ba37a13ef05065fdab4afe6dcfeb2961faf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page