Menu

[r34]: / tjacobs / MathUtils.java  Maximize  Restore  History

Download this file

574 lines (531 with data), 18.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/*
* Created on Nov 7, 2004 by @author Tom Jacobs
*
*/
package tjacobs;
import java.awt.Point;
import java.awt.geom.Path2D;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
/**
* Simple math routines spelled out
*
*/
public class MathUtils {
private MathUtils() {
super();
}
static double zScoreMinValue = -3.49;
static double[][] zScores = new double[][] {
{0.0002, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003},
{0.0003, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0005, 0.0005},
{0.0005, 0.0005, 0.0005, 0.0006, 0.0006, 0.0006, 0.0006, 0.0006, 0.0007, 0.0007},
{0.0007, 0.0007, 0.0008, 0.0008, 0.0008, 0.0008, 0.0009, 0.0009, 0.0009, 0.0010},
{0.0010, 0.0010, 0.0011, 0.0011, 0.0011, 0.0012, 0.0012, 0.0013, 0.0013, 0.0013},
{0.0014, 0.0014, 0.0015, 0.0015, 0.0016, 0.0016, 0.0017, 0.0018, 0.0018, 0.0019},
{0.0019, 0.0020, 0.0021, 0.0021, 0.0022, 0.0023, 0.0023, 0.0024, 0.0025, 0.0026},
{0.0026, 0.0027, 0.0028, 0.0029, 0.0030, 0.0031, 0.0032, 0.0033, 0.0034, 0.0035},
{0.0036, 0.0037, 0.0038, 0.0039, 0.0040, 0.0041, 0.0043, 0.0044, 0.0045, 0.0047},
{0.0048, 0.0049, 0.0051, 0.0052, 0.0054, 0.0055, 0.0057, 0.0059, 0.0060, 0.0062},
{0.0064, 0.0066, 0.0068, 0.0069, 0.0071, 0.0073, 0.0075, 0.0078, 0.0080, 0.0082},
{0.0084, 0.0087, 0.0089, 0.0091, 0.0094, 0.0096, 0.0099, 0.0102, 0.0104, 0.0107},
{0.0110, 0.0113, 0.0116, 0.0119, 0.0122, 0.0125, 0.0129, 0.0132, 0.0136, 0.0139},
{0.0143, 0.0146, 0.0150, 0.0154, 0.0158, 0.0162, 0.0166, 0.0170, 0.0174, 0.0179},
{0.0183, 0.0188, 0.0192, 0.0197, 0.0202, 0.0207, 0.0212, 0.0217, 0.0222, 0.0228},
{0.0233, 0.0239, 0.0244, 0.0250, 0.0256, 0.0262, 0.0268, 0.0274, 0.0281, 0.0287},
{0.0294, 0.0301, 0.0307, 0.0314, 0.0322, 0.0329, 0.0336, 0.0344, 0.0351, 0.0359},
{0.0367, 0.0375, 0.0384, 0.0392, 0.0401, 0.0409, 0.0418, 0.0427, 0.0436, 0.0446},
{0.0455, 0.0465, 0.0475, 0.0485, 0.0495, 0.0505, 0.0516, 0.0526, 0.0537, 0.0548},
{0.0559, 0.0571, 0.0582, 0.0594, 0.0606, 0.0618, 0.0630, 0.0643, 0.0655, 0.0668},
{0.0681, 0.0694, 0.0708, 0.0721, 0.0735, 0.0749, 0.0764, 0.0778, 0.0793, 0.0808},
{0.0823, 0.0838, 0.0853, 0.0869, 0.0885, 0.0901, 0.0918, 0.0934, 0.0951, 0.0968},
{0.0985, 0.1003, 0.1020, 0.1038, 0.1056, 0.1075, 0.1093, 0.1112, 0.1131, 0.1151},
{0.1170, 0.1190, 0.1210, 0.1230, 0.1251, 0.1271, 0.1292, 0.1314, 0.1335, 0.1357},
{0.1379, 0.1401, 0.1423, 0.1446, 0.1469, 0.1492, 0.1515, 0.1539, 0.1562, 0.1587},
{0.1611, 0.1635, 0.1660, 0.1685, 0.1711, 0.1736, 0.1762, 0.1788, 0.1814, 0.1841},
{0.1867, 0.1894, 0.1922, 0.1949, 0.1977, 0.2005, 0.2033, 0.2061, 0.2090, 0.2119},
{0.2148, 0.2177, 0.2206, 0.2236, 0.2266, 0.2296, 0.2327, 0.2358, 0.2389, 0.2420},
{0.2451, 0.2483, 0.2514, 0.2546, 0.2578, 0.2611, 0.2643, 0.2676, 0.2709, 0.2743},
{0.2776, 0.2810, 0.2843, 0.2877, 0.2912, 0.2946, 0.2981, 0.3015, 0.3050, 0.3085},
{0.3121, 0.3156, 0.3192, 0.3228, 0.3264, 0.3300, 0.3336, 0.3372, 0.3409, 0.3446},
{0.3483, 0.3520, 0.3557, 0.3594, 0.3632, 0.3669, 0.3707, 0.3745, 0.3783, 0.3821},
{0.3859, 0.3897, 0.3936, 0.3974, 0.4013, 0.4052, 0.4090, 0.4129, 0.4168, 0.4207},
{0.4247, 0.4286, 0.4325, 0.4364, 0.4404, 0.4443, 0.4483, 0.4522, 0.4562, 0.4602},
{0.4641, 0.4681, 0.4721, 0.4761, 0.4801, 0.4840, 0.4880, 0.4920, 0.4960, 0.5000 }};
public static double getZScoreProbability(double zScore) {
boolean positive = zScore > 0;
double scoreToLookUp = positive ? -zScore : zScore;
double firstTwoDigits = ((int)(scoreToLookUp * 10) / 10.0);
int lastDigit = Math.abs((int) ((scoreToLookUp - firstTwoDigits)* 100));
double percent = 0;
if (firstTwoDigits < zScoreMinValue) {
percent = zScores[0][0];
} else {
int row = (int) ((scoreToLookUp - zScoreMinValue) * 10);
int column = Math.abs(lastDigit - 9);
percent = zScores[row][column];
}
return positive ? 1.0 - percent : percent;
}
/** This method does not employ an optimal strategy for getting the z score for a probability. If you
* Need this to be faster, you should reimplement
* @param probability
* @return
*/
public static double getZScoreForProbability(double probability) {
if (probability >= 1 || probability <= 0) throw new IllegalArgumentException("Probability must be > 0 and < 1");
boolean positive = probability > .5;
if (positive) {
probability = 1 - probability;
}
double diff = 1;
int row = 0, col = 0;
for (int i = 0; i < zScores.length; i++) {
for (int j = 0; j < zScores[i].length; j++) {
double difference = Math.abs(probability - zScores[i][j]);
if (difference < diff) {
row = i;
col = j;
diff = difference;
}
else if (difference > diff) {
double zScore = getZScore(row, col);
if (positive) return zScore; else return -zScore;
}
}
}
double zScore = getZScore(row, col);
if (positive) return zScore; else return -zScore;
}
public static double getZScore(int row, int col) {
double zScore = (34 - row) * 0.1 + (Math.abs((double)col - 9)) / 100.0;
return zScore;
}
/**
* Get the euclideanDistance between 2 points
* formula is Math.sqrt((x1 - x2)^2 + (y1 - y2)^2)
*
* http://en.wikipedia.org/wiki/Euclidean_distance
*
* @return the distance
* @deprecated
* @see distance(Point, Point)
*/
public static double euclideanDistance(Point p1, Point p2) {
return Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));
}
/**
* Calculate the total distance along a Path2D
* @param path
* @return
*/
public static double totalDistance(Path2D path) {
double dist = 0;
PathIterator iter = path.getPathIterator(null);
double at[] = new double[2];
double to[] = new double[2];
iter.currentSegment(at);
while (!iter.isDone()) {
iter.next();
iter.currentSegment(to);
dist += distance (at[0], at[1], to[0], to[1]);
at[0] = to[0];
at[1] = to[1];
}
return dist;
}
/**
*
* http://en.wikipedia.org/wiki/Factorial
*
* @return x!
*/
public static int factorial(int x) {
int pow = 1;
while (x > 1) {
pow = pow * x;
x--;
}
return pow;
}
/**
*
* http://en.wikipedia.org/wiki/Combinatorics#Enumerative_combinatorics
*
* @param total
* @param picks
* @param replacing
* @param ordered
* @return
*/
public static int getCombinations(int total, int picks, boolean replacing, boolean ordered) {
int ans = 0;
if (replacing && ordered) {
ans = (int)Math.pow(total, picks);
//total / Math.pow(totalpicks)
}
else if (!replacing && ordered){
ans = factorial (total);
ans /= factorial(total - picks);
} else if (replacing && !ordered) {
ans = factorial(total + picks - 1);
ans /= factorial(picks);
ans /= factorial(total - picks);
}
else if (!replacing && !ordered) {
ans = factorial(total);
ans/= factorial(picks);
ans/= factorial(total - picks);
}
return ans;
}
/**
* Get the distance to the origin
* @param p1
* @return
*/
public static double distance(Point2D p1) {
return distance(p1.getX(), p1.getY());
}
/**
* Get the distance to the origin
* @param p1
* @return
*/
public static double distance(Point p1) {
return distance((double)p1.x, (double)p1.y);
}
/**
* Get the euclideanDistance between 2 points
* formula is Math.sqrt((x1 - x2)^2 + (y1 - y2)^2)
*
* http://en.wikipedia.org/wiki/Euclidean_distance
* @return the distance
*/
public static double distance (Point p1, Point p2) {
return distance(p1.x, p1.y, p2.x, p2.y);
}
/**
* Get the euclideanDistance between 2 points
* formula is Math.sqrt((x1 - x2)^2 + (y1 - y2)^2)
*
* http://en.wikipedia.org/wiki/Euclidean_distance
*
* @return the distance
*/
public static double distance(double x1, double y1) {
return distance(x1, y1, 0, 0);
}
/**
* Get the euclideanDistance between 2 points
* formula is Math.sqrt((x1 - x2)^2 + (y1 - y2)^2)
*
* http://en.wikipedia.org/wiki/Euclidean_distance
*
* @return the distance
*/
public static double distance (double x1, double y1, double x2, double y2) {
return Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
/**
* This method is mostly a re-branding of Math.atan2 for easier code reading
* and to make it a little easier to use
* @param p1
* @param p2
* @return
*/
public static double angle (Point2D p1, Point2D p2) {
return angle(p1.getX(), p1.getY(), p2.getX(), p2.getY());
}
/**
* This method is mostly a re-branding of Math.atan2 for easier code reading
* and to make it a little easier to use
* @param p1
* @param p2
* @return angle in radians going from pt (x2, y2) to pt (x1, y1)
*/
public static double angle (double x1, double y1, double x2, double y2) {
double xdiff = x1 - x2;
double ydiff = y1 - y2;
//double tan = xdiff / ydiff;
double atan = Math.atan2(ydiff, xdiff);
return atan;
}
/**
*
* @param ray angle being reflected
* @param reflectOff angle of the "wall" being reflected off of
* @return
*/
public static double reflectOff(double ray, double reflectOff) {
return reflectOff + reflectOff - ray;
}
public static final boolean SLOPETEST = true;
/**
* Assumes 0 = going right, Math.PI / 2 = going down
* @param angle
* @return
*/
public static double getSlope(double angle) {
double xchange = Math.cos(angle);
double ychange = Math.sin(angle);
if (SLOPETEST) {
assert(Math.atan2(ychange, xchange) == angle);
}
xchange = ((int)(xchange * 1000000)) / 1000000.0;
ychange = ((int)(ychange * 1000000)) / 1000000.0;
if (xchange == 0) return Double.NaN;
return ychange / xchange;
}
/**
* Assuming line1 has angle angle1, line2 have angle angle2, and at x = 0, y1 - y2 = heightdiff
* @param angle1 cannot be infinity or NaN
* @param angle2 cannot be infinity or NaN
* @param heightdiff
* @return
*/
public static double getIntersectionPoint(double angle1, double angle2, double heightdiff) {
double slope1 = getSlope(angle1);
double slope2 = getSlope(angle2);
double combinedslope = slope2 - slope1;
return heightdiff / combinedslope;
}
/**
* Get the Y coordinate for the given x coordinate
* @param start
* @param slope
* @param x
* @return
*/
public static double getYAtX(Point2D start, double slope, double x) {
return start.getY() + (x - start.getX()) * (slope);
}
/**
* Get the intersection point between two vectors
* @param start1
* @param angle1
* @param start2
* @param angle2
* @return
*/
public static Point2D getIntersectionPoint(Point2D start1, double angle1, Point2D start2, double angle2) {
double slope1 = getSlope(angle1), slope2 = getSlope(angle2);
if (Double.isInfinite(slope1) || Double.isNaN(slope1)) {
if (Double.isInfinite(slope2) || Double.isNaN(slope2)) {
if (start1.getX() != start2.getX()) {
return null;
}
else {
//returning 0 for y coordinate is arbitary - lines are the same.
return new Point2D.Double(start1.getX(), 0);
}
}
else {
return new Point2D.Double(start1.getX(), getYAtX(start2, slope2, start1.getX()));
}
}
if ((Double.isInfinite(slope2)|| Double.isNaN(slope2))) {
return new Point2D.Double(start2.getX(), getYAtX(start1, slope1, start2.getX()));
}
double b1 = -1, b2 = -1;
double a1 = slope1, a2 = slope2;
double d1 = start1.getY() - start1.getX() * slope1;
double d2 = start2.getY() - start2.getX() * slope2;
double x = (b2 * d1 - b1 * d2)/(a1 * b2 - a2 * b1);
double y = (a1 * d2 - a2 * d1)/(a1 * b2 - a2 *b1);
if (Double.isNaN(x) || Double.isNaN(y) || Double.isInfinite(x) || Double.isInfinite(y)) return null;
return new Point2D.Double(-x, -y);
}
/**
* Get the intersection points between a rectangle and a vector
* @param r
* @param pt
* @param angle
* @return
*/
public static Point2D[] getIntersectionPoints(Rectangle2D r, Point2D pt, double angle) {
Point2D.Double testPt1 = new Point2D.Double(r.getX(), r.getY());
Point2D.Double testPt2 = new Point2D.Double(r.getX() + r.getWidth(), r.getY() + r.getHeight());
Point2D bottom = getIntersectionPoint(testPt1, 0, pt, angle);
Point2D top = getIntersectionPoint(testPt2, Math.PI, pt, angle);
Point2D left = getIntersectionPoint(testPt1, Math.PI / 2, pt, angle);
Point2D right = getIntersectionPoint(testPt2, 3 * Math.PI / 2, pt, angle);
//should have 0 or 2 viable points
boolean viable1 = bottom != null && bottom.getX() >= r.getX() && bottom.getX() <= r.getX() + r.getWidth();
boolean viable2 = top != null && top.getX() >= r.getX() && top.getX() <= r.getX() + r.getWidth();
boolean viable3 = right != null && right.getY() >= r.getY() && right.getY() <= r.getY() + r.getHeight();
boolean viable4 = left != null && left.getY() >= r.getY() && left.getY() <= r.getY() + r.getHeight();
int viableCount = (viable1 ? 1 : 0) + (viable2 ? 1 : 0) + (viable3 ? 1 : 0) + (viable4 ? 1 : 0);
Point2D[] vals = new Point2D.Double[viableCount];
int idx = 0;
if (viable1) {
vals[idx++] = bottom;
}
if (viable2) {
vals[idx++] = top;
}
if (viable3) {
vals[idx++] = right;
}
if (viable4) {
vals[idx++] = left;
}
return vals;
}
/**
* Get the mean of a data set
* http://simple.wikipedia.org/wiki/Mean_(statistics)
* @param data
* @return
*/
public static double getMean(double[] data) {
double sum = 0;
for (double d : data) {
sum += d;
}
return sum / data.length;
}
/**
* sorts the data, picks out middle element
* @param data
* @return
*/
public static double getMedian(double[] data) {
if (data == null || data.length == 0) throw new IllegalArgumentException("array must be non null and have length > 0");
java.util.Arrays.sort(data);
return data[data.length / 2];
}
/**
* sorts the data, picks out most frequent element
* @param data
* @return
*/
public static double getMode(double[] data) {
if (data == null || data.length == 0) throw new IllegalArgumentException("array must be non null and have length > 0");
java.util.Arrays.sort(data);
int maxCount = 1;
double maxNum = data[0];
int count = 1;
double num = data[0];
for (int i = 1; i < data.length; i++) {
if (data[i] == num) {
count++;
}
else {
count = 1;
num = data[i];
}
if (count > maxCount) {
maxCount = count;
maxNum = num;
}
}
return maxNum;
}
/**
* Get the standard deviation for a data set
* @param data
* @return
*/
public static double getSD(double[] data) {
return Math.sqrt(getVariance(data));
}
/**
* Get the variance for a data set
* @param data
* @return
*/
public static double getVariance(double[] data) {
double mean = getMean(data);
double variance = 0;
for (double d : data) {
double diff = mean - d;
variance += diff * diff;
}
return variance / data.length;
}
/**normalize an angle to be -PI < angle <= Math.PI
*
* @param angle
* @return normalized angle
*/
public static double normalizeAngle(double angle) {
while (angle > Math.PI) {
angle -= 2 * Math.PI;
}
while (angle <= -Math.PI) {
angle += 2 * Math.PI;
}
return angle;
}
/**
* This exception indicates that the extrapolate function
* which was run cannot get an answer, as the vector is
* perpendicular to the end point
* @author tjacobs
*
*/
public static class BadAngleException extends Exception {
private static final long serialVersionUID = 1L;
public BadAngleException(double angle) {
super("" + angle);
}
}
public static double extrapolateYValueForLineAt(double angle, double startX, double startY, double atX) throws BadAngleException {
double cos = Math.cos(angle);
if (cos == 0) throw new BadAngleException(angle);
double sin = Math.sin(angle);
return startY + (atX - startX) / cos * sin;
}
public static double extrapolateXValueForLineAt(double angle, double startX, double startY, double atY) throws BadAngleException {
double sin = Math.sin(angle);
if (sin == 0) throw new BadAngleException(angle);
double cos = Math.cos(angle);
return startX + (atY - startY) / sin * cos;
}
public static boolean isPrime(long num) {
if (num <= 0L) throw new IllegalArgumentException("Number must be positive: " + num);
if ((num & 0x1) != 1) return num == 2;
if (num % 5 == 0) return num == 5;
double sqrtd = Math.sqrt(num);
int sqrt = (int) Math.round(sqrtd); // could round up but thats ok. want to make sure numbers like 2.999999998 are corrected upwards
for (int i = 3; i <= sqrt; i+=2) {
if (i % 5 == 0) continue;
long div = num / i;
if (div * i == num) return false;
}
return true;
}
//Testing only
public static void main(String args[]) {
double[] vals = new double[] {10,12,14,15,8,10,5,11,10,11,30};
System.out.println("mean: " + getMean(vals));
System.out.println("median: " + getMedian(vals));
System.out.println("mode: " + getMode(vals));
System.out.println("sd: " + getSD(vals));
System.out.println(reflectOff(0, Math.PI / 4) / Math.PI);
System.out.println(reflectOff(Math.PI / 2, Math.PI) / Math.PI);
System.out.println(reflectOff(5 * Math.PI / 4, Math.PI / 2) / Math.PI);
System.out.println(reflectOff(Math.PI, Math.PI / 2));
double angle1 = Math.PI / 4;
//double angle2 = Math.PI / 3;
double angle2 = Math.atan2(3, 2);
System.out.println("angle2 = " + angle2 / Math.PI * 180);
double slope1 = getSlope(angle1), slope2 = getSlope(angle2);
System.out.println("slope1: " + getSlope(angle1) + "slope2: " + getSlope(angle2) + " intersects: " + getIntersectionPoint(angle1, angle2, 1));
Point2D.Double origin = new Point2D.Double(0,0);
System.out.println("getYatX for x = 11: " + getYAtX(origin, slope1, 11) + " : " + getYAtX(origin, slope2, 11));
Point2D.Double pt2 = new Point2D.Double(2, 3);
double slope3 = 4;
double angle3 = Math.atan2(slope3, 1);
System.out.println("intersection: " + getIntersectionPoint(pt2, angle1, origin, angle3));
//System.out.println()
Rectangle2D.Double r = new Rectangle2D.Double(0,0,2,2);
Point2D[] pts = getIntersectionPoints(r, pt2, angle1);
System.out.println("pts: " + pts.length);
for (int i = 0; i < pts.length; i++) {
System.out.println("pt: " + pts[i]);
}
}
}