With Swift 5, you can create shift(withDistance:) and shiftInPlace(withDistance:) methods in an Array extension with the following implementation in order to solve your problem:
extension Array {
/**
Returns a new array with the first elements up to specified distance being shifted to the end of the collection. If the distance is negative, returns a new array with the last elements up to the specified absolute distance being shifted to the beginning of the collection.
If the absolute distance exceeds the number of elements in the array, the elements are not shifted.
*/
func shift(withDistance distance: Int = 1) -> Array<Element> {
let offsetIndex = distance >= 0 ?
self.index(startIndex, offsetBy: distance, limitedBy: endIndex) :
self.index(endIndex, offsetBy: distance, limitedBy: startIndex)
guard let index = offsetIndex else { return self }
return Array(self[index ..< endIndex] + self[startIndex ..< index])
}
/**
Shifts the first elements up to specified distance to the end of the array. If the distance is negative, shifts the last elements up to the specified absolute distance to the beginning of the array.
If the absolute distance exceeds the number of elements in the array, the elements are not shifted.
*/
mutating func shiftInPlace(withDistance distance: Int = 1) {
self = shift(withDistance: distance)
}
}
Usage:
let array = Array(1...10)
let newArray = array.shift(withDistance: 3)
print(newArray) // prints: [4, 5, 6, 7, 8, 9, 10, 1, 2, 3]
var array = Array(1...10)
array.shiftInPlace(withDistance: -2)
print(array) // prints: [9, 10, 1, 2, 3, 4, 5, 6, 7, 8]
let array = Array(1...10)
let newArray = array.shift(withDistance: 30)
print(newArray) // prints: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
let array = Array(1...10)
let newArray = array.shift(withDistance: 0)
print(newArray) // prints: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
var array = Array(1...10)
array.shiftInPlace()
print(array) // prints: [2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
var array = [Int]()
array.shiftInPlace(withDistance: -2)
print(array) // prints: []