I have a Pandas DataFrame that is multiindexed and want to find the minimum value of a certain column in a subset of rows on each level, and get the entire contents of those rows.
import pandas as pd
idx = pd.MultiIndex.from_product([['v1', 'v2'],
['record' + str(i) for i in range(1, 7)]])
df = pd.DataFrame([[2., 114], [2., 1140],
[3., 114], [3., 1140],
[5., 114], [5., 1140],
[2., 114], [2., 1140],
[3., 114], [3., 1140],
[5., 114], [5., 1140]],
columns=['col1', 'col2'],
index=idx)
My structure:
col1 col2
level1 level2
v1 record1 2.0 114
record2 2.0 1140
record3 3.0 114
record4 3.0 1140
record5 5.0 114
record6 5.0 1140
v2 record1 2.0 114
record2 2.0 1140
record3 3.0 114
record4 3.0 1140
record5 5.0 114
record6 5.0 1140
Example desired output I want the minimum value of another column where col1 == 5:
col1 col2
level1 level2
v1 record5 5.0 114
v2 record5 5.0 114
I know that I can get a subset of rows by using a comparison statement.
df.ix[df['col1'] == 5]
And I also know that I can get the minimum values of a column within that subset from all levels.
df['col2'][df['col1'] == 5].min(level='level1')
And if I want to specify the level, then I can get the index of 1 row on specific level.
df.ix['v1', pay_up_file.ix['v1']['col2'][(df.ix['v1']['col1'] == 5)].idxmin()]
But I cannot figure out if there is an efficient way to get the indexes from all levels
There does not seem to be a method available along the lines of this:
df['col2'][df['col1'] == 5].idxmin(level='level1')
I can get to what I want with this:
df.ix[
(df['col1'] == 5) &
(df['col2'].isin(df['col2'][df['col1'] == 5].min(level='level1').values))
]
But with everything else that is in Pandas, is there a better way to get to my output?