3

My Tensorflow model takes in a sequence of sequence data for each example, namely, sequences of character tokens in a sequence of words (e.g., [[3], [4,3],[6,1,20]]). I was able to do this before by padding a 3D numpy array [batch_size, max_words_len, max_chars_len] and feeding that into a placeholder.

in_question_chars = tf.placeholder(tf.int32, 
                                   [None, None, None], 
                                   name="in_question_chars")
# example of other data
in_question_words = tf.placeholder(tf.int32, 
                                   [None, None], 
                                   name="in_question_words")

But now I would like to use Google Cloud Machine Learning Engine for online prediction/deployment. Based on the example from Tensorflow Serving: https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/mnist_saved_model.py

I came up with something like this but don't really know what to use for the feature to parse the sequence of sequence char tokens:

serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'in_question_chars':tf.FixedLenSequenceFeature(shape=[None], 
                                       allow_missing=True, 
                                       dtype=tf.int32, 
                                       default_value=0), 
                   'in_question_words':tf.FixedLenSequenceFeature(shape=[], 
                                       allow_missing=True, 
                                       dtype=tf.int32, 
                                       default_value=0)
                   }

tf_example = tf.parse_example(serialized_tf_example, feature_configs)

in_question_chars = tf.identity(tf_example['in_question_chars'], 
                                name='in_question_chars')
# example of other data
in_question_words = tf.identity(tf_example['in_question_words'], 
                                name='in_question_words')

Should I use VarLenFeature, which turns it into a SparseTensor (eventhough it's not really sparse), and then use tf.sparse_tensor_to_dense to convert it back to dense?

For the next step, I get the embedding for each char token.

in_question_char_repres = tf.nn.embedding_lookup(char_embedding, 
                                                 in_question_chars) 

So another option is to keep it a SparseTensor and then use tf.nn.embedding_lookup_sparse

I wasn't able to find an example of how this should be done. Please let me know what is best practice. Thanks!


Edit 8/25/17

It doesn't seem to allow me to set None for the 2nd dimension.

Here's an abridged version of my code

def read_dataset(filename, mode=tf.contrib.learn.ModeKeys.TRAIN):  
    def _input_fn():
        num_epochs = MAX_EPOCHS if mode == tf.contrib.learn.ModeKeys.TRAIN else 1

        input_file_names = tf.train.match_filenames_once(str(filename))

        filename_queue = tf.train.string_input_producer(
            input_file_names, num_epochs=num_epochs, shuffle=True)
        reader = tf.TFRecordReader()
        _, serialized = reader.read_up_to(filename_queue, num_records=batch_size)

        features_spec = {
            CORRECT_CHILD_NODE_IDX: tf.FixedLenFeature(shape=[],
                                               dtype=tf.int64, 
                                               default_value=0),
            QUESTION_LENGTHS: tf.FixedLenFeature(shape=[], dtype=tf.int64),
            IN_QUESTION_WORDS: tf.FixedLenSequenceFeature(shape=[], 
                                                      allow_missing=True, 
                                                      dtype=tf.int64
                                                      ),
            QUESTION_CHAR_LENGTHS: tf.FixedLenSequenceFeature(shape=[], 
                                                          allow_missing=True, 
                                                          dtype=tf.int64
                                                          ),
            IN_QUESTION_CHARS: tf.FixedLenSequenceFeature(shape=[None], 
                                                      allow_missing=True, 
                                                      dtype=tf.int64
                                                      )
            }
        examples = tf.parse_example(serialized, features=features_spec)

        label = examples[CORRECT_CHILD_NODE_IDX]
        return examples, label   # dict of features, label
    return _input_fn

When I have 'None' for the shape, it gives me this error:

    INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_task_type': None, '_task_id': 0, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f57fc309c18>, '_master': '', '_num_ps_replicas': 0, '_num_worker_replicas': 0, '_environment': 'local', '_is_chief': True, '_evaluation_master': '', '_tf_config': gpu_options {
  per_process_gpu_memory_fraction: 1.0
}
, '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_secs': 600, '_log_step_count_steps': 100, '_session_config': None, '_save_checkpoints_steps': None, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_model_dir': 'outputdir'}
WARNING:tensorflow:From /home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/monitors.py:269: BaseMonitor.__init__ (from tensorflow.contrib.learn.python.learn.monitors) is deprecated and will be removed after 2016-12-05.
Instructions for updating:
Monitors are deprecated. Please use tf.train.SessionRunHook.
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py in _call_cpp_shape_fn_impl(op, input_tensors_needed, input_tensors_as_shapes_needed, require_shape_fn)
    653           graph_def_version, node_def_str, input_shapes, input_tensors,
--> 654           input_tensors_as_shapes, status)
    655   except errors.InvalidArgumentError as err:

/home/jupyter-admin/anaconda3/lib/python3.6/contextlib.py in __exit__(self, type, value, traceback)
     88             try:
---> 89                 next(self.gen)
     90             except StopIteration:

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in raise_exception_on_not_ok_status()
    465           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466           pywrap_tensorflow.TF_GetCode(status))
    467   finally:

InvalidArgumentError: dense_shapes[2] has unknown rank or unknown inner dimensions: [?,?] for 'ParseExample/ParseExample' (op: 'ParseExample') with input shapes: [?], [0], [], [], [], [], [], [], [], [], [], [0], [1], [], [], [0], [], [0], [0], [0].

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-45-392858a0e7b4> in <module>()
     48 
     49 shutil.rmtree('outputdir', ignore_errors=True) # start fresh each time
---> 50 learn_runner.run(experiment_fn, 'outputdir')

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/learn_runner.py in run(experiment_fn, output_dir, schedule, run_config, hparams)
    207   schedule = schedule or _get_default_schedule(run_config)
    208 
--> 209   return _execute_schedule(experiment, schedule)
    210 
    211 

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/learn_runner.py in _execute_schedule(experiment, schedule)
     44     logging.error('Allowed values for this experiment are: %s', valid_tasks)
     45     raise TypeError('Schedule references non-callable member %s' % schedule)
---> 46   return task()
     47 
     48 

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/experiment.py in train_and_evaluate(self)
    500             name=eval_dir_suffix, hooks=self._eval_hooks
    501         )]
--> 502       self.train(delay_secs=0)
    503 
    504     eval_result = self._call_evaluate(input_fn=self._eval_input_fn,

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/experiment.py in train(self, delay_secs)
    278     return self._call_train(input_fn=self._train_input_fn,
    279                             max_steps=self._train_steps,
--> 280                             hooks=self._train_monitors + extra_hooks)
    281 
    282   def evaluate(self, delay_secs=None, name=None):

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/experiment.py in _call_train(self, _sentinel, input_fn, steps, hooks, max_steps)
    675                                  steps=steps,
    676                                  max_steps=max_steps,
--> 677                                  monitors=hooks)
    678 
    679   def _call_evaluate(self, _sentinel=None,  # pylint: disable=invalid-name,

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
    294               'in a future version' if date is None else ('after %s' % date),
    295               instructions)
--> 296       return func(*args, **kwargs)
    297     return tf_decorator.make_decorator(func, new_func, 'deprecated',
    298                                        _add_deprecated_arg_notice_to_docstring(

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py in fit(self, x, y, input_fn, steps, batch_size, monitors, max_steps)
    456       hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps))
    457 
--> 458     loss = self._train_model(input_fn=input_fn, hooks=hooks)
    459     logging.info('Loss for final step: %s.', loss)
    460     return self

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py in _train_model(self, input_fn, hooks)
    954       random_seed.set_random_seed(self._config.tf_random_seed)
    955       global_step = contrib_framework.create_global_step(g)
--> 956       features, labels = input_fn()
    957       self._check_inputs(features, labels)
    958       model_fn_ops = self._get_train_ops(features, labels)

<ipython-input-44-fdb63ed72b90> in _input_fn()
     35                                                           )
     36             }
---> 37         examples = tf.parse_example(serialized, features=features_spec)
     38 
     39         label = examples[CORRECT_CHILD_NODE_IDX]

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/parsing_ops.py in parse_example(serialized, features, name, example_names)
    573   outputs = _parse_example_raw(
    574       serialized, example_names, sparse_keys, sparse_types, dense_keys,
--> 575       dense_types, dense_defaults, dense_shapes, name)
    576   return _construct_sparse_tensors_for_sparse_features(features, outputs)
    577 

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/parsing_ops.py in _parse_example_raw(serialized, names, sparse_keys, sparse_types, dense_keys, dense_types, dense_defaults, dense_shapes, name)
    698         dense_keys=dense_keys,
    699         dense_shapes=dense_shapes,
--> 700         name=name)
    701     # pylint: enable=protected-access
    702 

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_parsing_ops.py in _parse_example(serialized, names, sparse_keys, dense_keys, dense_defaults, sparse_types, dense_shapes, name)
    174                                 dense_defaults=dense_defaults,
    175                                 sparse_types=sparse_types,
--> 176                                 dense_shapes=dense_shapes, name=name)
    177   return _ParseExampleOutput._make(result)
    178 

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py in apply_op(self, op_type_name, name, **keywords)
    765         op = g.create_op(op_type_name, inputs, output_types, name=scope,
    766                          input_types=input_types, attrs=attr_protos,
--> 767                          op_def=op_def)
    768         if output_structure:
    769           outputs = op.outputs

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device)
   2630                     original_op=self._default_original_op, op_def=op_def)
   2631     if compute_shapes:
-> 2632       set_shapes_for_outputs(ret)
   2633     self._add_op(ret)
   2634     self._record_op_seen_by_control_dependencies(ret)

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in set_shapes_for_outputs(op)
   1909       shape_func = _call_cpp_shape_fn_and_require_op
   1910 
-> 1911   shapes = shape_func(op)
   1912   if shapes is None:
   1913     raise RuntimeError(

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in call_with_requiring(op)
   1859 
   1860   def call_with_requiring(op):
-> 1861     return call_cpp_shape_fn(op, require_shape_fn=True)
   1862 
   1863   _call_cpp_shape_fn_and_require_op = call_with_requiring

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py in call_cpp_shape_fn(op, require_shape_fn)
    593     res = _call_cpp_shape_fn_impl(op, input_tensors_needed,
    594                                   input_tensors_as_shapes_needed,
--> 595                                   require_shape_fn)
    596     if not isinstance(res, dict):
    597       # Handles the case where _call_cpp_shape_fn_impl calls unknown_shape(op).

/home/jupyter-admin/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py in _call_cpp_shape_fn_impl(op, input_tensors_needed, input_tensors_as_shapes_needed, require_shape_fn)
    657       missing_shape_fn = True
    658     else:
--> 659       raise ValueError(err.message)
    660 
    661   if missing_shape_fn:

ValueError: dense_shapes[2] has unknown rank or unknown inner dimensions: [?,?] for 'ParseExample/ParseExample' (op: 'ParseExample') with input shapes: [?], [0], [], [], [], [], [], [], [], [], [], [0], [1], [], [], [0], [], [0], [0], [0].

Currently, I'm getting around this by turning the 2D sequence of sequence into 1D sequence by setting the second dimension to a max_char_length and then concatenating it into a 1d array. So I keep only the first max_char_length char if it's longer than max_char_length or pad it with zeros if it's shorter. This seems to work but perhaps there's a way where it can accept variable length sequence for the second dimension and do padding in tf.parse_example or tf.train.batch.

1 Answer 1

4

EDIT: fixed confusing/wrong answer =)

So what you want is a tf.SequenceExample which uses tf.parse_single_sequence_example rather than tf.parse_example. This allows you to have each feature in the feature_list within an example be part of a sequence, in this case each Feature can be a VarLenFeature representing the number of characters in the word. Unfortunately, this doesn't work as well when you want to pass multiple sentences. So we have to do some hacking around with higher order functions and tf.sparse_concat:

I produced a test program that does this here: https://gist.github.com/elibixby/1c7a2497f96a457130241c59c676ebd4

The input (before serialization to a batch of SequenceExamples) looks like:

[[[5, 10], [5, 10, 20]],
 [[0, 1, 2], [2, 1, 0], [0, 1, 2, 3]]]

The resulting SparseTensor looks like:

SparseTensorValue(indices=array([[[0, 0, 0],
    [0, 0, 1],
    [0, 1, 0],
    [0, 1, 1],
    [0, 1, 2],
    [1, 0, 0],
    [1, 0, 1],
    [1, 0, 2],
    [1, 1, 0],
    [1, 1, 1],
    [1, 1, 2],
    [1, 2, 0],
    [1, 2, 1],
    [1, 2, 2],
    [1, 2, 3]]]), values=array([[ 5, 10,  5, 10, 20,  0,  1,  2,  2,  1,  0,  0,  1,  2,  3]]), dense_shape=array([[2, 3, 4]]))

Which appears to be a SparseTensor where index=[sentence, word, letter]

Sign up to request clarification or add additional context in comments.

1 Comment

Hey Cliff, I fixed this answer, now that I have a better understanding of what you want to do. Turned out to be pretty hard so let me know if that works for you =)

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.