2
patient_dummies = pd.get_dummies(df['PatientSerial'], prefix='Serial_', drop_first = True)
df = pd.concat([df, patient_dummies], axis = 1)
df.drop(['PatientSerial'], inplace = True, axis = 1)


machine_dummies = pd.get_dummies(df['MachineID'], drop_first = True)
df = pd.concat([df, machine_dummies], axis = 1)
df.drop(['MachineID'], inplace = True, axis = 1)

I have two columns in dataframe df that I want to change into unordered categorical variables. Instead of doing each one separately, is there more efficient way to accomplish this? I was thinking of the following way:

patient_dummies = pd.get_dummies(df['PatientSerial'], prefix='Serial_', drop_first = True)
machine_dummies = pd.get_dummies(df['MachineID'], drop_first = True)
df = pd.concat([df, patient_dummies + machine_dummies], axis = 1)
df.drop(['PatientSerial','MachineID'], inplace = True, axis = 1)

But this didn't work; it generated 'nan' for all the entries instead of 0's and 1's.

1 Answer 1

6

Yes: pandas.get_dummies() accepts a columns argument. If you pass column names from your DataFrame, it returns both of those columns dummified, as a part of the entire DataFrame that you passed.

df = pd.get_dummies(df, columns=['PatientSerial', 'MachineID'], drop_first=True)

For example:

np.random.seed(444)
v = np.random.choice([0, 1, 2], size=(2, 10))
df = pd.DataFrame({'other_col': np.empty_like(v[0]),
                   'PatientSerial': v[0],
                   'MachineID': v[1]})

pd.get_dummies(df, columns=['PatientSerial', 'MachineID'],
               drop_first=True, prefix=['Serial', 'MachineID'])

   other_col  Serial_1  Serial_2  MachineID_1  MachineID_2
0          2         0         0            0            1
1          1         0         0            0            1
2          2         0         0            0            0
3          2         1         0            1            0
4          2         0         1            0            0
5          2         1         0            0            1
6          2         0         1            0            0
7          2         1         0            0            1
8          2         1         0            0            0
9          2         1         0            0            1
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.