I would like to train a CNN using a 2D numpy array as input, but I am receiving this error: ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (21, 21).
My input is indeed a 21x21 numpy array of floats. The first layer of the network is defined as Conv2D(32, (3, 3), input_shape=(21, 21, 1)) to match the shape of the input array.
I have found some similar questions but none pertaining to a 2D input array, they mostly deal with images. According to the documentation, Conv2D is expecting an input of a 4D tensor containing (samples, channels, rows, cols), but I cannot find any documentation explaining the meaning of these values. Similar questions pertaining to image inputs suggest reshaping the input array using np.ndarray.reshape(), but when trying to do that I receive an input error.
How can I train a CNN on such an input array? Should input_shape be a different size tuple?