The code provided here works unless we start to increase the distinct and n-symbols and length, for example, on my computer n_symbols=512, length=512, distinct=300 ends up with this error RecursionError: maximum recursion depth exceeded in comparison and then overflow errors if I increase the lru_cache value.
What I want is to have a non-recursive version of this code.
from functools import lru_cache
@lru_cache
def get_permutations_count(n_symbols, length, distinct, used=0):
'''
- n_symbols: number of symbols in the alphabet
- length: the number of symbols in each sequence
- distinct: the number of distinct symbols in each sequence
'''
if distinct < 0:
return 0
if length == 0:
return 1 if distinct == 0 else 0
else:
return \
get_permutations_count(n_symbols, length-1, distinct-0, used+0) * used + \
get_permutations_count(n_symbols, length-1, distinct-1, used+1) * (n_symbols - used)
Then
get_permutations_count(n_symbols=300, length=300, distinct=270)
runs in ~0.5 second giving the answer
2729511887951350984580070745513114266766906881300774347439917775
7093985721949669285469996223829969654724957176705978029888262889
8157939885553971500652353177628564896814078569667364402373549268
5524290993833663948683375995196081654415976659499171897405039547
1546236260377859451955180752885715923847446106509971875543496023
2494854876774756172488117802642800540206851318332940739395445903
6305051887120804168979339693187702655904071331731936748927759927
3688881301614948043182289382736687065840703041231428800720854767
0713406956719647313048146023960093662879015837313428567467555885
3564982943420444850950866922223974844727296000000000000000000000
000000000000000000000000000000000000000000000000
math.factorialandmath.combormath.perm? It'll be very fast. Otherwise, turning a recursive function into an iterative one requires pushing and popping values on a list instead of the stack.