|
| 1 | + |
| 2 | +def get_shortest_distance(table, vertex): |
| 3 | + shortest_distance = table[vertex][DISTANCE] |
| 4 | + return shortest_distance |
| 5 | + |
| 6 | +def set_shortest_distance(table, vertex, new_distance): |
| 7 | + table[vertex][DISTANCE] = new_distance |
| 8 | + |
| 9 | +def set_previous_node(table, vertex, previous_node): |
| 10 | + table[vertex][PREVIOUS_NODE] = previous_node |
| 11 | + |
| 12 | +def get_distance(graph, first_vertex, second_vertex): |
| 13 | + return graph[first_vertex][second_vertex] |
| 14 | + |
| 15 | +def get_next_node(table, visited_nodes): |
| 16 | + unvisited_nodes = list(set(table.keys()).difference(set(visited_nodes))) |
| 17 | + assumed_min = table[unvisited_nodes[0]][DISTANCE] |
| 18 | + min_vertex = unvisited_nodes[0] |
| 19 | + for node in unvisited_nodes: |
| 20 | + if table[node][DISTANCE] < assumed_min: |
| 21 | + assumed_min = table[node][DISTANCE] |
| 22 | + min_vertex = node |
| 23 | + return min_vertex |
| 24 | + |
| 25 | +def find_shortest_path(graph, table, origin): |
| 26 | + visited_nodes = [] |
| 27 | + current_node = origin |
| 28 | + starting_node = origin |
| 29 | + while True: |
| 30 | + adjacent_nodes = graph[current_node] |
| 31 | + if set(adjacent_nodes).issubset(set(visited_nodes)): |
| 32 | + # Nothing here to do. All adjacent nodes have been visited. |
| 33 | + pass |
| 34 | + else: |
| 35 | + unvisited_nodes = set(adjacent_nodes).difference(set(visited_nodes)) |
| 36 | + for vertex in unvisited_nodes: |
| 37 | + distance_from_starting_node = get_shortest_distance(table, vertex) |
| 38 | + if distance_from_starting_node == INFINITY and current_node == starting_node: |
| 39 | + total_distance = get_distance(graph, vertex, current_node) |
| 40 | + else: |
| 41 | + total_distance = get_shortest_distance (table, |
| 42 | + current_node) + get_distance(graph, current_node, vertex) |
| 43 | + if total_distance < distance_from_starting_node: |
| 44 | + set_shortest_distance(table, vertex, total_distance) |
| 45 | + set_previous_node(table, vertex, current_node) |
| 46 | + visited_nodes.append(current_node) |
| 47 | + #print(visited_nodes) |
| 48 | + if len(visited_nodes) == len(table.keys()): |
| 49 | + break |
| 50 | + current_node = get_next_node(table,visited_nodes) |
| 51 | + return(table) |
| 52 | + |
| 53 | +graph = dict() |
| 54 | +graph['A'] = {'B': 5, 'D': 9, 'E': 2} |
| 55 | +graph['B'] = {'A': 5, 'C': 2} |
| 56 | +graph['C'] = {'B': 2, 'D': 3} |
| 57 | +graph['D'] = {'A': 9, 'F': 2, 'C': 3} |
| 58 | +graph['E'] = {'A': 2, 'F': 3} |
| 59 | +graph['F'] = {'E': 3, 'D': 2} |
| 60 | + |
| 61 | +table = dict() |
| 62 | +table = { |
| 63 | + 'A': [0, None], |
| 64 | + 'B': [float("inf"), None], |
| 65 | + 'C': [float("inf"), None], |
| 66 | + 'D': [float("inf"), None], |
| 67 | + 'E': [float("inf"), None], |
| 68 | + 'F': [float("inf"), None], |
| 69 | +} |
| 70 | + |
| 71 | + |
| 72 | +DISTANCE = 0 |
| 73 | +PREVIOUS_NODE = 1 |
| 74 | +INFINITY = float('inf') |
| 75 | + |
| 76 | +shortest_distance_table = find_shortest_path(graph, table, 'A') |
| 77 | + |
| 78 | + |
| 79 | +for k in sorted(shortest_distance_table): |
| 80 | + print("{} - {}".format(k,shortest_distance_table[k])) |
0 commit comments