|
1 | 1 | # Visualizing-Sales-Data-with-NumPy-and-Matplotlib |
2 | | -In this project, I analyze commercial sales data using NumPy and pandas. I visualize total revenue per product using color-coded bar charts in Matplotlib. It’s a foundational step in business data analysis and project documentation. |
| 2 | +# 📊 Sales Data Analysis with NumPy and Matplotlib |
| 3 | + |
| 4 | +This project is a beginner-to-intermediate level data analysis of sales data using **pandas**, **NumPy**, and **Matplotlib**. It demonstrates how to read, clean, analyze, and visualize sales information from a CSV file. |
| 5 | + |
| 6 | +--- |
| 7 | + |
| 8 | +## 🧠 Objectives |
| 9 | + |
| 10 | +- Convert raw sales data into useful insights. |
| 11 | +- Calculate total revenue per product. |
| 12 | +- Use NumPy for array manipulation and slicing. |
| 13 | +- Visualize results with a colorful, labeled bar chart. |
| 14 | + |
| 15 | +--- |
| 16 | + |
| 17 | +## 🗂️ Dataset Description |
| 18 | + |
| 19 | +The dataset contains the following columns: |
| 20 | + |
| 21 | +- **Product**: The name of the product. |
| 22 | +- **Quantity**: Units sold. |
| 23 | +- **Price**: Unit price in dollars. |
| 24 | +- **Date**: Date of sale. |
| 25 | + |
| 26 | +--- |
| 27 | + |
| 28 | +## 🧮 Analysis Steps |
| 29 | + |
| 30 | +1. **Read CSV Data** using `pandas`. |
| 31 | +2. **Convert Columns to Numeric** types with error handling. |
| 32 | +3. **Calculate Revenue** per row (Price × Quantity). |
| 33 | +4. **Convert DataFrame to NumPy Array** for slicing and filtering. |
| 34 | +5. **Extract Unique Products** and compute: |
| 35 | + - Total revenue per product. |
| 36 | + - Percentage share of total revenue. |
| 37 | +6. **Visualize the Results** using `Matplotlib`: |
| 38 | + - Each product is assigned a unique color. |
| 39 | + - Products are displayed as numbered bars. |
| 40 | + - A dynamic legend explains which number corresponds to which product. |
| 41 | + |
| 42 | +--- |
| 43 | + |
| 44 | +## 📈 Output Example |
| 45 | + |
| 46 | + <!-- You can upload and link your actual chart --> |
| 47 | + |
| 48 | +--- |
| 49 | + |
| 50 | +## 🛠️ Technologies Used |
| 51 | + |
| 52 | +- Python |
| 53 | +- pandas |
| 54 | +- NumPy |
| 55 | +- Matplotlib |
| 56 | + |
| 57 | +--- |
| 58 | + |
| 59 | +## 💡 What You Will Learn |
| 60 | + |
| 61 | +- Data cleaning with `pandas` |
| 62 | +- NumPy slicing and boolean masking |
| 63 | +- Revenue calculation by category |
| 64 | +- Building clear, colorful visualizations |
| 65 | +- Working with legends and layout in `Matplotlib` |
| 66 | + |
| 67 | +--- |
| 68 | + |
| 69 | +## 🚀 Future Improvements |
| 70 | + |
| 71 | +- Group data by date and analyze revenue trends over time. |
| 72 | +- Add Seaborn or Plotly for interactive visualizations. |
| 73 | +- Build a simple dashboard using Streamlit. |
| 74 | + |
| 75 | +--- |
| 76 | + |
| 77 | +## 📬 Contact |
| 78 | + |
| 79 | +If you like this project or have questions, feel free to connect: |
| 80 | + |
| 81 | +- GitHub: [DataFalcon 🦅] |
| 82 | + |
| 83 | +- Email: [tammahakki700@gmail.com] |
| 84 | + |
| 85 | +--- |
| 86 | + |
| 87 | +## 🔖 License |
| 88 | + |
| 89 | +This project is open-source and available under the [MIT License](LICENSE). |
| 90 | + |
0 commit comments