Skip to content

Commit 98523c3

Browse files
authored
Update README.md
1 parent 2c3dae1 commit 98523c3

File tree

1 file changed

+89
-1
lines changed

1 file changed

+89
-1
lines changed

README.md

Lines changed: 89 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,90 @@
11
# Visualizing-Sales-Data-with-NumPy-and-Matplotlib
2-
In this project, I analyze commercial sales data using NumPy and pandas. I visualize total revenue per product using color-coded bar charts in Matplotlib. It’s a foundational step in business data analysis and project documentation.
2+
# 📊 Sales Data Analysis with NumPy and Matplotlib
3+
4+
This project is a beginner-to-intermediate level data analysis of sales data using **pandas**, **NumPy**, and **Matplotlib**. It demonstrates how to read, clean, analyze, and visualize sales information from a CSV file.
5+
6+
---
7+
8+
## 🧠 Objectives
9+
10+
- Convert raw sales data into useful insights.
11+
- Calculate total revenue per product.
12+
- Use NumPy for array manipulation and slicing.
13+
- Visualize results with a colorful, labeled bar chart.
14+
15+
---
16+
17+
## 🗂️ Dataset Description
18+
19+
The dataset contains the following columns:
20+
21+
- **Product**: The name of the product.
22+
- **Quantity**: Units sold.
23+
- **Price**: Unit price in dollars.
24+
- **Date**: Date of sale.
25+
26+
---
27+
28+
## 🧮 Analysis Steps
29+
30+
1. **Read CSV Data** using `pandas`.
31+
2. **Convert Columns to Numeric** types with error handling.
32+
3. **Calculate Revenue** per row (Price × Quantity).
33+
4. **Convert DataFrame to NumPy Array** for slicing and filtering.
34+
5. **Extract Unique Products** and compute:
35+
- Total revenue per product.
36+
- Percentage share of total revenue.
37+
6. **Visualize the Results** using `Matplotlib`:
38+
- Each product is assigned a unique color.
39+
- Products are displayed as numbered bars.
40+
- A dynamic legend explains which number corresponds to which product.
41+
42+
---
43+
44+
## 📈 Output Example
45+
46+
![Bar Chart](revenue_chart.png) <!-- You can upload and link your actual chart -->
47+
48+
---
49+
50+
## 🛠️ Technologies Used
51+
52+
- Python
53+
- pandas
54+
- NumPy
55+
- Matplotlib
56+
57+
---
58+
59+
## 💡 What You Will Learn
60+
61+
- Data cleaning with `pandas`
62+
- NumPy slicing and boolean masking
63+
- Revenue calculation by category
64+
- Building clear, colorful visualizations
65+
- Working with legends and layout in `Matplotlib`
66+
67+
---
68+
69+
## 🚀 Future Improvements
70+
71+
- Group data by date and analyze revenue trends over time.
72+
- Add Seaborn or Plotly for interactive visualizations.
73+
- Build a simple dashboard using Streamlit.
74+
75+
---
76+
77+
## 📬 Contact
78+
79+
If you like this project or have questions, feel free to connect:
80+
81+
- GitHub: [DataFalcon 🦅]
82+
83+
- Email: [tammahakki700@gmail.com]
84+
85+
---
86+
87+
## 🔖 License
88+
89+
This project is open-source and available under the [MIT License](LICENSE).
90+

0 commit comments

Comments
 (0)