|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "9a8d9072", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Installing the NAG Library and running this notebook\n", |
| 9 | + "To run this notebook, you will need to install the NAG Library for Python (Mark 29.3 or newer) and a license key. You can find the software and have a license key (trials are available) from our website here: [Getting Started with the NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linux)\n", |
| 10 | + "\n", |
| 11 | + "We are solving a classic portfolio optimization problem using the NAG Library integration in CVXPY. It can be formulated in the following way:\n", |
| 12 | + "\n", |
| 13 | + "\\begin{equation*}\n", |
| 14 | + " \\begin{aligned}\n", |
| 15 | + " &\\min_{x \\in \\mathbb{R}^n} &&\\frac{1}{2} x^T Q_0 x + r^T_0 x\n", |
| 16 | + " \\\\\n", |
| 17 | + " &\\textrm{subject to } &&\\frac{1}{2} x^T Q_1 x + r^T_1 x \\leq 0,\n", |
| 18 | + " \\\\\n", |
| 19 | + " & &&e^Tx = 1,\n", |
| 20 | + " \\\\\n", |
| 21 | + " & && x \\geq 0,\n", |
| 22 | + " \\end{aligned}\n", |
| 23 | + "\\end{equation*}\n", |
| 24 | + "where $e$ refers to the vector of all ones." |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 1, |
| 30 | + "id": "dcbfd044", |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "# Import modules\n", |
| 35 | + "from cvxpy import Minimize, Problem, Variable, quad_form, sum, atoms, OPTIMAL, NAG\n", |
| 36 | + "import numpy as np\n", |
| 37 | + "import naginterfaces" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 2, |
| 43 | + "id": "4d4bec67-2af9-4d14-932c-ac616f223be8", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [ |
| 46 | + { |
| 47 | + "data": { |
| 48 | + "text/plain": [ |
| 49 | + "-0.17415932352686342" |
| 50 | + ] |
| 51 | + }, |
| 52 | + "execution_count": 2, |
| 53 | + "metadata": {}, |
| 54 | + "output_type": "execute_result" |
| 55 | + } |
| 56 | + ], |
| 57 | + "source": [ |
| 58 | + "# Define number of assets\n", |
| 59 | + "n = 500 \n", |
| 60 | + "\n", |
| 61 | + "# Generate random data\n", |
| 62 | + "np.random.seed(2)\n", |
| 63 | + "r0 = np.matrix(np.random.randn(n, 1))\n", |
| 64 | + "r1 = np.matrix(np.random.randn(n, 1))\n", |
| 65 | + "q0 = np.matrix(np.random.randn(n, n))\n", |
| 66 | + "q0 = q0.T * q0\n", |
| 67 | + "q1 = np.matrix(np.random.randn(n, n))\n", |
| 68 | + "q1 = q1.T * q1\n", |
| 69 | + "\n", |
| 70 | + "# Skip psd check due to issues with ARPACK\n", |
| 71 | + "q0 = atoms.affine.wraps.psd_wrap(q0)\n", |
| 72 | + "q1 = atoms.affine.wraps.psd_wrap(q1)\n", |
| 73 | + "\n", |
| 74 | + "# Create the cvxpy problem:\n", |
| 75 | + "# Define the variables\n", |
| 76 | + "x = Variable(len(r1))\n", |
| 77 | + "\n", |
| 78 | + "# Define the constraints\n", |
| 79 | + "constraints = [\n", |
| 80 | + " 0 <= x, \n", |
| 81 | + " sum(x) == 1,\n", |
| 82 | + " 0.5*quad_form(x, q1) + (r1.T @ x) <= 0]\n", |
| 83 | + "\n", |
| 84 | + "# Define the objective function\n", |
| 85 | + "objective = Minimize(0.5*quad_form(x, q0) + r0.T @ x)\n", |
| 86 | + "\n", |
| 87 | + "# Set up dictionary for option setting\n", |
| 88 | + "nag_params = {'SOCP System Formulation':'AS',\n", |
| 89 | + " 'SOCP Factorization Method':'MA86'\n", |
| 90 | + " }\n", |
| 91 | + "\n", |
| 92 | + "# Define the problem\n", |
| 93 | + "prob = Problem(objective, constraints)\n", |
| 94 | + "\n", |
| 95 | + "# Solve the problem using NAG\n", |
| 96 | + "prob.solve(solver=NAG, nag_params=nag_params)" |
| 97 | + ] |
| 98 | + } |
| 99 | + ], |
| 100 | + "metadata": { |
| 101 | + "kernelspec": { |
| 102 | + "display_name": "Python 3 (ipykernel)", |
| 103 | + "language": "python", |
| 104 | + "name": "python3" |
| 105 | + }, |
| 106 | + "language_info": { |
| 107 | + "codemirror_mode": { |
| 108 | + "name": "ipython", |
| 109 | + "version": 3 |
| 110 | + }, |
| 111 | + "file_extension": ".py", |
| 112 | + "mimetype": "text/x-python", |
| 113 | + "name": "python", |
| 114 | + "nbconvert_exporter": "python", |
| 115 | + "pygments_lexer": "ipython3", |
| 116 | + "version": "3.10.8" |
| 117 | + } |
| 118 | + }, |
| 119 | + "nbformat": 4, |
| 120 | + "nbformat_minor": 5 |
| 121 | +} |
0 commit comments