Skip to content

BUG: Inconsistent behavior with groupby and copy-on-write #63219

@rhshadrach

Description

@rhshadrach

Grouping by a Series and the mutating that Series can have different impacts whether a view on the data exists.

ser = pd.Series([1, 2, 1])
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
gb = df.groupby(ser)
ser.iloc[0] = 100
print(gb.sum())
#      a  b
# 1    3  6
# 2    2  5
# 100  1  4

ser = pd.Series([1, 2, 1])
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
ser2 = ser[:]
gb = df.groupby(ser)
ser.iloc[0] = 100
print(gb.sum())
#    a   b
# 1  4  10
# 2  2   5

This only happens for certain paths in groupby, e.g. using

ser = pd.Series(pd.Categorical([1, 2, 1], categories=[1, 2, 100]))

gives the latter behavior. We should be taking a shallow copy of any grouping Series when we create the DataFrameGroupBy instance.

Hat-tip to @jorisvandenbossche for constructing the example.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions