You can subscribe to this list here.
| 2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
| 2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
| 2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
| 2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
| 2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
| 2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
| 2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
| 2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
| 2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
| 2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
| 2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
| 2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
| 2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
| 2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
| 2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| 2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| 2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| S | M | T | W | T | F | S |
|---|---|---|---|---|---|---|
|
1
(1) |
2
|
3
|
4
|
5
(10) |
6
|
7
(3) |
|
8
(5) |
9
|
10
(3) |
11
(1) |
12
(16) |
13
(1) |
14
|
|
15
(5) |
16
(5) |
17
(4) |
18
(2) |
19
(9) |
20
(4) |
21
(2) |
|
22
|
23
(1) |
24
|
25
(4) |
26
(6) |
27
(9) |
28
(1) |
|
29
(2) |
30
|
|
|
|
|
|
|
From: dydy2014 <dya...@gm...> - 2014-06-01 09:40:28
|
Dear all,
It is still the same problem. Actually my code like below :
import os
import netCDF4 as nc
import numpy as np
import matplotlib.pylab as pl
base_dir = 'C:/DATA2011/' # Note PC
nc_file1 = '20110301.faifb1p16m2.nc' # Single beam data
nc_file2 = '20110301.faifb1p16m3.nc' # Single beam data
nc_file3 = '20110301.faifb1p16m4.nc' # Single beam data
# Change directory
os.chdir(base_dir)
# Open netCDF file
fd1 = nc.Dataset(nc_file1, 'r')
fd2 = nc.Dataset(nc_file2, 'r')
fd3 = nc.Dataset(nc_file3, 'r')
# Read variables from the netCDF file
date1 = fd1.variables['date'][:]
beam1 = fd1.variables['beam'][:]
az1 = fd1.variables['az'][:]
ze1 = fd1.variables['ze'][:]
rng1 = fd1.variables['range'][:]
tim1 = fd1.variables['time'][:]
pwr1 = fd1.variables['pwr'][:]
dpl1 = fd1.variables['dpl'][:]
nfft1 = fd1.variables['nfft'][0]
pn1 = fd1.variables['pnoise'][:]
# Read variables from the netCDF file
date2 = fd2.variables['date'][:]
beam2 = fd2.variables['beam'][:]
az2 = fd2.variables['az'][:]
ze2 = fd2.variables['ze'][:]
rng2 = fd2.variables['range'][:]
tim2 = fd2.variables['time'][:]
pwr2 = fd2.variables['pwr'][:]
dpl2 = fd2.variables['dpl'][:]
nfft2 = fd2.variables['nfft'][0]
pn2 = fd2.variables['pnoise'][:]
# Read variables from the netCDF file
date3 = fd3.variables['date'][:]
beam3 = fd3.variables['beam'][:]
az3 = fd3.variables['az'][:]
ze3 = fd3.variables['ze'][:]
rng3 = fd3.variables['range'][:]
tim3 = fd3.variables['time'][:]
pwr3 = fd3.variables['pwr'][:]
dpl3 = fd3.variables['dpl'][:]
nfft3 = fd3.variables['nfft'][0]
pn3 = fd3.variables['pnoise'][:]
# Close netCDF file
fd1.close()
fd2.close()
fd3.close()
# Speify which beam to show
ibeam1 = 0
ibeam2 = 0
ibeam3 = 0
# Time convertion from seconds to hours
tim1 = tim1/3600.0
tim2 = tim2/3600.0
tim3 = tim3/3600.0
# Select data of the specified beam, and transpose
p_plot1 = pwr1[ibeam1]
for it1 in range(len(tim1)):
p_plot1[it1] = p_plot1[it1] - pn1[ibeam1][it1] - 10.*np.log10(nfft1)
p_plot1 = p_plot1.transpose()
# Select data of the specified beam, and transpose
p_plot2 = pwr2[ibeam2]
for it2 in range(len(tim2)):
p_plot2[it2] = p_plot2[it2] - pn2[ibeam2][it2] - 10.*np.log10(nfft2)
p_plot2 = p_plot2.transpose()
# Select data of the specified beam, and transpose
p_plot3 = pwr3[ibeam3]
for it3 in range(len(tim3)):
p_plot3[it3] = p_plot3[it3] - pn3[ibeam3][it3] - 10.*np.log10(nfft3)
p_plot3 = p_plot3.transpose()
# Count max SNR (single beam)
pthres1 = 2.0
N_total1 = 0
N_signal1 = 0
for j in range(len(tim1)):
if 18.0 <= tim1[j] <= 30.0:
for i in range(len(rng1)):
N_total1 = N_total1 + 1
if 200.0 <= rng1[i] <= 550 :
if p_plot1[i][j] > pthres1:
ipthres1 = i
jpthres1 = j
N_signal1 = N_signal1 + 1
# Count max SNR (single beam)
pthres2 = 2.0
N_total2 = 0
N_signal2 = 0
for j in range(len(tim2)):
if 18.0 <= tim2[j] <= 30.0:
for i in range(len(rng2)):
N_total2 = N_total2 + 1
if 200.0 <= rng2[i] <= 550 :
if p_plot2[i][j] > pthres2:
ipthres2 = i
jpthres2 = j
N_signal2 = N_signal2 + 1
# Count max SNR (single beam)
pthres3 = 2.0
N_total3 = 0
N_signal3 = 0
for j in range(len(tim3)):
if 18.0 <= tim3[j] <= 30.0:
for i in range(len(rng3)):
N_total3 = N_total3 + 1
if 200.0 <= rng3[i] <= 550 :
if p_plot3[i][j] > pthres3:
ipthres3 = i
jpthres3 = j
N_signal3 = N_signal3 + 1
fig = pl.figure()
#Plot contour
axs1=fig.add_subplot(3,1,1)
v1 = np.linspace(0., 50., 10., endpoint=True)
axs1=pl.contourf(tim1, rng1, p_plot1, v1, cmap1=pl.cm.jet)
x1 = pl.colorbar(ticks=v1)
print x1
# Set X and Y axis lower/upper limit
set_xy1 = range(4)
set_xy1[0] = 18.0 # x min
set_xy1[1] = 30.0 # x max
set_xy1[2] = 200.0 # y min
set_xy1[3] = 550.0 # y max
pl.axis(set_xy1)
axs2=fig.add_subplot(3,1,2)
v2 = np.linspace(0., 50., 10., endpoint=True)
axs2=pl.contourf(tim2, rng2, p_plot2, v2, cmap2=pl.cm.jet)
x2 = pl.colorbar(ticks=v2)
print x2
# Set X and Y axis lower/upper limit
set_xy2 = range(4)
set_xy2[0] = 18.0 # x min
set_xy2[1] = 30.0 # x max
set_xy2[2] = 200.0 # y min
set_xy2[3] = 550.0 # y max
pl.axis(set_xy2)
axs3=fig.add_subplot(3,1,3)
v3 = np.linspace(0., 50., 10., endpoint=True)
axs3=pl.contourf(tim3, rng3, p_plot3, v3, cmap3=pl.cm.jet)
x3 = pl.colorbar(ticks=v3)
print x3
# Set X and Y axis lower/upper limit
set_xy3 = range(4)
set_xy3[0] = 18.0 # x min
set_xy3[1] = 30.0 # x max
set_xy3[2] = 200.0 # y min
set_xy3[3] = 550.0 # y max
pl.axis(set_xy3)
pl.show()
# Set X and Y axis lower/upper limit
set_xy1 = range(4)
set_xy1[0] = 18.0 # x min
set_xy1[1] = 30.0 # x max
set_xy1[2] = 200.0 # y min
set_xy1[3] = 550.0 # y max
pl.axis(set_xy1)
Could somebody help me to make the code shorter by using loop and the image
only show one colorbar for three image?.
Recent result :
<http://matplotlib.1069221.n5.nabble.com/file/n43464/figure_1.png>
--
View this message in context: http://matplotlib.1069221.n5.nabble.com/One-colorbar-for-many-plot-tp43430p43464.html
Sent from the matplotlib - users mailing list archive at Nabble.com.
|