You can subscribe to this list here.
| 2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
| 2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
| 2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
| 2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
| 2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
| 2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
| 2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
| 2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
| 2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
| 2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
| 2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
| 2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
| 2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
| 2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
| 2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| 2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| 2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| S | M | T | W | T | F | S |
|---|---|---|---|---|---|---|
|
|
1
(9) |
2
(8) |
3
(6) |
4
(5) |
5
(10) |
6
(1) |
|
7
|
8
(5) |
9
(3) |
10
(12) |
11
(24) |
12
(28) |
13
(16) |
|
14
(3) |
15
(10) |
16
(17) |
17
(19) |
18
(10) |
19
(20) |
20
(7) |
|
21
(11) |
22
(7) |
23
(5) |
24
(4) |
25
(11) |
26
(19) |
27
(1) |
|
28
(1) |
29
(13) |
30
(7) |
31
(22) |
|
|
|
|
From: Aman T. <ama...@gm...> - 2011-08-24 21:10:23
|
Hi, I've recently created a web application, using Django, to dynamically create maps from weather data. When I tried using FigCanvasAgg and figure.Figure, the image that was responded by the web server (using canvas.print_png and django.http.HttpResponse) did not show the map, just the scatter points. When I just saved the figure (that was created using a matplotlib.pyplot.figure() instance) in folder that is statically available on the web server, the image is perfect. There is an advantage to using the latter method as the saved images can be cached, but I'm curious as to why the FigCanvasAgg method doesn't work. Is this a known issue? If so, are there any workarounds? Any help on this issue would be greatly appreciated. Thanks, Aman |
|
From: surfcast23 <sur...@gm...> - 2011-08-24 20:48:32
|
I am fairly new to programing and have a question regarding matplotlib. I wrote a python script that reads in data from the outfile of another program then prints out the data from one column. f = open( 'myfile.txt','r') for line in f: if line != ' ': line = line.strip() # Strips end of line character columns = line.split() # Splits into coloumn mass = columns[8] # Column which contains mass values print(mass) What I now need to do is have matplotlib take the values printed in 'mass' and plot number versus mean mass. I have read the documents on the matplotlib website, but they don't really address how to get data from a script(or I just did not see it) If anyone can point me to some documentation that explains how I do this it would be really appreciated. Thanks in advance -- View this message in context: http://old.nabble.com/How-do-you-Plot-data-generated-by-a-python-script--tp32328822p32328822.html Sent from the matplotlib - users mailing list archive at Nabble.com. |
|
From: Eric F. <ef...@ha...> - 2011-08-24 17:36:04
|
On 08/24/2011 06:53 AM, Jeffrey Spencer wrote:
> I created this graph below but if I set the y axis upper limit to 100.
> It cuts off the top half of the dots which are at 100. I wasn't sure how
> to get the dots to show properly like now but set the y-axis upper limit
> to 100 instead of like 102. It makes the data look misleading to have
> that little tail above 100. Essentially a way to create the axis but
> offset the actual axis grid to 95% of that or any other suggestions.
>
> Cheers
Try the changes indicated below.
>
>
> Script used to create here:
>
> import matplotlib.pyplot as plt
> import matplotlib.ticker as tick
> from numpy import load, sqrt, shape, size, loadtxt, transpose
>
> def clear_spines(ax):
> ax.spines['top'].set_color('none')
> ax.spines['right'].set_color('none')
> def set_spineLineWidth(ax, lineWidth):
> for i in ax.spines.keys():
> ax.spines[i].set_linewidth(lineWidth)
> def showOnlySomeTicks(x, pos):
> s = str(int(x))
> if x == 5000:
> return '5e3'#'%.0e' % x
> return ''
>
>
> plt.close('all')
> golden_mean = (sqrt(5)-1.0)/2.0 # Aesthetic ratio
> fig_width = fig_width_pt*inches_per_pt # width in inches
> fig_height = fig_width*golden_mean # height in inches
> fig_size = [fig_width,fig_height]
> tick_size = 9
> fontlabel_size = 10.5
> params = {'backend': 'wxAgg', 'axes.labelsize': fontlabel_size,
> 'text.fontsize': fontlabel_size, 'legend.fontsize': fontlabel_size,
> 'xtick.labelsize': tick_size, 'ytick.labelsize': tick_size,
> 'text.usetex': True, 'figure.figsize': fig_size}
> plt.rcParams.update(params)
> sizeX = storeMat[0].size
> fig = plt.figure(1)
> #figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
> #fig.set_size_inches(fig_size)
> plt.clf()
> ax = plt.axes([0.145,0.18,0.95-0.155,0.95-0.2])
pts, =
plt.plot(storeMat[0][::2],storeMat[1][::2]/300.*100,'ko',markersize=3.5)
# Note: the comma after "pts" is intentional.
pts.set_clip_on(False)
> #plt.plot(storeMat[0][::2],storeMat[1][::2]/300.*100,'k')
plt.ylim(0,100)
> plt.xlabel('Number of Channels')
> plt.ylabel('Recognition Accuracy')
> set_spineLineWidth(ax,spineLineWidth)
> clear_spines(ax)
> ax.yaxis.set_ticks_position('left')
> ax.xaxis.set_ticks_position('bottom')
> #ax.xaxis.set_minor_formatter(tick.FuncFormatter(showOnlySomeTicks))
> #plt.legend()
> for i in outExt:
> plt.savefig('lineVersion/'+outFile+i, dpi = mydpi)
>
>
>
> ------------------------------------------------------------------------------
> EMC VNX: the world's simplest storage, starting under $10K
> The only unified storage solution that offers unified management
> Up to 160% more powerful than alternatives and 25% more efficient.
> Guaranteed. http://p.sf.net/sfu/emc-vnx-dev2dev
>
>
>
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
|
|
From: Jeffrey S. <jef...@gm...> - 2011-08-24 16:54:27
|
I created this graph below but if I set the y axis upper limit to 100.
It cuts off the top half of the dots which are at 100. I wasn't sure how
to get the dots to show properly like now but set the y-axis upper limit
to 100 instead of like 102. It makes the data look misleading to have
that little tail above 100. Essentially a way to create the axis but
offset the actual axis grid to 95% of that or any other suggestions.
Cheers
Script used to create here:
import matplotlib.pyplot as plt
import matplotlib.ticker as tick
from numpy import load, sqrt, shape, size, loadtxt, transpose
def clear_spines(ax):
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
def set_spineLineWidth(ax, lineWidth):
for i in ax.spines.keys():
ax.spines[i].set_linewidth(lineWidth)
def showOnlySomeTicks(x, pos):
s = str(int(x))
if x == 5000:
return '5e3'#'%.0e' % x
return ''
plt.close('all')
golden_mean = (sqrt(5)-1.0)/2.0 # Aesthetic ratio
fig_width = fig_width_pt*inches_per_pt # width in inches
fig_height = fig_width*golden_mean # height in inches
fig_size = [fig_width,fig_height]
tick_size = 9
fontlabel_size = 10.5
params = {'backend': 'wxAgg', 'axes.labelsize': fontlabel_size,
'text.fontsize': fontlabel_size, 'legend.fontsize': fontlabel_size,
'xtick.labelsize': tick_size, 'ytick.labelsize': tick_size,
'text.usetex': True, 'figure.figsize': fig_size}
plt.rcParams.update(params)
sizeX = storeMat[0].size
fig = plt.figure(1)
#figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
#fig.set_size_inches(fig_size)
plt.clf()
ax = plt.axes([0.145,0.18,0.95-0.155,0.95-0.2])
plt.plot(storeMat[0][::2],storeMat[1][::2]/300.*100,'ko',markersize=3.5)
#plt.plot(storeMat[0][::2],storeMat[1][::2]/300.*100,'k')
plt.ylim(0,102)
plt.xlabel('Number of Channels')
plt.ylabel('Recognition Accuracy')
set_spineLineWidth(ax,spineLineWidth)
clear_spines(ax)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
#ax.xaxis.set_minor_formatter(tick.FuncFormatter(showOnlySomeTicks))
#plt.legend()
for i in outExt:
plt.savefig('lineVersion/'+outFile+i, dpi = mydpi)
--
________________________
Jeffrey Spencer
jef...@gm...
|