|
From: <Ros...@ga...> - 2009-11-02 07:08:21
|
Listers,
I'm using basemap to plot randomly sampled values (x,y,z) through hexbin. This produces a very nice result. Some sample code is:
----------
import numpy as np
from numpy.random import seed
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.mlab import griddata
ll_lat = -38.39477 # extent of area of interest
ll_lon = 144.54767
ur_lat = -37.51642
ur_lon = 145.67144
num_points = 100 # sample points
# create random sampling over the area of interest
seed(0)
data = np.ones((3, num_points))
data[0,:] *= ll_lon + np.random.random((num_points))*(ur_lon-ll_lon)
data[1,:] *= ll_lat + np.random.random((num_points))*(ur_lat-ll_lat)
data[2,:] *= np.random.random((num_points))*10000
# plot the data
fig = plt.figure()
ax = fig.add_subplot(111)
m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f',
suppress_ticks=False, area_thresh=0.5)
plt.hexbin(data[0,:], data[1,:], data[2,:], zorder=3)
m.fillcontinents(color=(0.8,0.8,0.8,0), zorder=1)
m.drawcoastlines(linewidth=0.25, color='k', zorder=2)
plt.show()
----------
This contrived example shows a sparse set of hexagons on both land and ocean. I would like the hexagons over the ocean to be hidden. I can make the ones on land disappear by changing the 'zorder' parameter of .hexbin() to 0. However I have found no way of doing the inverse and hiding hexagons over the ocean.
Using drawlsmask() is too crude at a 5-minute resolution.
Any ideas?
Thanks,
Ross
|
|
From: Stephane R. <ste...@gm...> - 2009-11-02 09:00:32
|
Ross, one way is to mask (or remove) ocean points using the _geoslib module provided with basemap. When you create a Basemap instance, you can retrieve all its polygons land (continents and islands) with "mymap.coastpolygons". Thay are stored as numpy arrays, and you can convert them to _geoslib.Polygon objects : poly = _geoslib.Polygon(N.asarray(coastalpoly).T) Then you loop over all Polygons and all (x,y) points and test : good_point = _geoslib.Point((x,y)).within(poly) Thanks to this method, you can choose you optimal resolution. You can even compute the intersection of you hexagons with coastal polygons using .intersection() and .area (instead of simply checking if the center is inside) and then reject points depending the fraction of the cell covered by land (or ocean). On Mon, Nov 2, 2009 at 8:07 AM, <Ros...@ga...> wrote: > Listers, > > I'm using basemap to plot randomly sampled values (x,y,z) through hexbin. > This produces a very nice result. Some sample code is: > ---------- > import numpy as np > from numpy.random import seed > import matplotlib.pyplot as plt > from mpl_toolkits.basemap import Basemap > from matplotlib.mlab import griddata > > ll_lat = -38.39477 # extent of area of interest > ll_lon = 144.54767 > ur_lat = -37.51642 > ur_lon = 145.67144 > > num_points = 100 # sample points > > # create random sampling over the area of interest > seed(0) > data = np.ones((3, num_points)) > data[0,:] *= ll_lon + np.random.random((num_points))*(ur_lon-ll_lon) > data[1,:] *= ll_lat + np.random.random((num_points))*(ur_lat-ll_lat) > data[2,:] *= np.random.random((num_points))*10000 > > # plot the data > fig = plt.figure() > ax = fig.add_subplot(111) > m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat, > llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f', > suppress_ticks=False, area_thresh=0.5) > plt.hexbin(data[0,:], data[1,:], data[2,:], zorder=3) > m.fillcontinents(color=(0.8,0.8,0.8,0), zorder=1) > m.drawcoastlines(linewidth=0.25, color='k', zorder=2) > plt.show() > ---------- > > This contrived example shows a sparse set of hexagons on both land and > ocean. I would like the hexagons over the ocean to be hidden. I can make > the ones on land disappear by changing the 'zorder' parameter of .hexbin() > to 0. However I have found no way of doing the inverse and hiding hexagons > over the ocean. > > Using drawlsmask() is too crude at a 5-minute resolution. > > Any ideas? > > Thanks, > Ross > > > ------------------------------------------------------------------------------ > Come build with us! The BlackBerry(R) Developer Conference in SF, CA > is the only developer event you need to attend this year. Jumpstart your > developing skills, take BlackBerry mobile applications to market and stay > ahead of the curve. Join us from November 9 - 12, 2009. Register now! > http://p.sf.net/sfu/devconference > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > -- Stephane Raynaud |
|
From: Jeff W. <js...@fa...> - 2009-11-02 15:53:00
Attachments:
hexbin.py
|
Stephane Raynaud wrote: > Ross, > > > one way is to mask (or remove) ocean points using the _geoslib module > provided with basemap. > When you create a Basemap instance, you can retrieve all its polygons > land (continents and islands) with "mymap.coastpolygons". > Thay are stored as numpy arrays, and you can convert them to > _geoslib.Polygon objects : > > poly = _geoslib.Polygon(N.asarray(coastalpoly).T) > > Then you loop over all Polygons and all (x,y) points and test : > > good_point = _geoslib.Point((x,y)).within(poly) > > Thanks to this method, you can choose you optimal resolution. > You can even compute the intersection of you hexagons with coastal > polygons using .intersection() and .area (instead of simply checking > if the center is inside) and then reject points depending the fraction > of the cell covered by land (or ocean). Following Stephane's excellent suggestion, here's a prototype Basemap method that checks to see if a point is on land or over water. Ross - if you find it useful I'll include it in the next release. Note that it will be slow for lots of points or large map regions. -Jeff > > On Mon, Nov 2, 2009 at 8:07 AM, <Ros...@ga... > <mailto:Ros...@ga...>> wrote: > > Listers, > > I'm using basemap to plot randomly sampled values (x,y,z) through > hexbin. This produces a very nice result. Some sample code is: > ---------- > import numpy as np > from numpy.random import seed > import matplotlib.pyplot as plt > from mpl_toolkits.basemap import Basemap > from matplotlib.mlab import griddata > > ll_lat = -38.39477 # extent of area of interest > ll_lon = 144.54767 > ur_lat = -37.51642 > ur_lon = 145.67144 > > num_points = 100 # sample points > > # create random sampling over the area of interest > seed(0) > data = np.ones((3, num_points)) > data[0,:] *= ll_lon + np.random.random((num_points))*(ur_lon-ll_lon) > data[1,:] *= ll_lat + np.random.random((num_points))*(ur_lat-ll_lat) > data[2,:] *= np.random.random((num_points))*10000 > > # plot the data > fig = plt.figure() > ax = fig.add_subplot(111) > m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat, > llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f', > suppress_ticks=False, area_thresh=0.5) > plt.hexbin(data[0,:], data[1,:], data[2,:], zorder=3) > m.fillcontinents(color=(0.8,0.8,0.8,0), zorder=1) > m.drawcoastlines(linewidth=0.25, color='k', zorder=2) > plt.show() > ---------- > > This contrived example shows a sparse set of hexagons on both land > and ocean. I would like the hexagons over the ocean to be hidden. > I can make the ones on land disappear by changing the 'zorder' > parameter of .hexbin() to 0. However I have found no way of doing > the inverse and hiding hexagons over the ocean. > > Using drawlsmask() is too crude at a 5-minute resolution. > > Any ideas? > > Thanks, > Ross > > ------------------------------------------------------------------------------ > Come build with us! The BlackBerry(R) Developer Conference in SF, CA > is the only developer event you need to attend this year. > Jumpstart your > developing skills, take BlackBerry mobile applications to market > and stay > ahead of the curve. Join us from November 9 - 12, 2009. Register now! > http://p.sf.net/sfu/devconference > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > <mailto:Mat...@li...> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > -- > Stephane Raynaud > ------------------------------------------------------------------------ > > ------------------------------------------------------------------------------ > Come build with us! The BlackBerry(R) Developer Conference in SF, CA > is the only developer event you need to attend this year. Jumpstart your > developing skills, take BlackBerry mobile applications to market and stay > ahead of the curve. Join us from November 9 - 12, 2009. Register now! > http://p.sf.net/sfu/devconference > ------------------------------------------------------------------------ > > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > -- Jeffrey S. Whitaker Phone : (303)497-6313 Meteorologist FAX : (303)497-6449 NOAA/OAR/PSD R/PSD1 Email : Jef...@no... 325 Broadway Office : Skaggs Research Cntr 1D-113 Boulder, CO, USA 80303-3328 Web : http://tinyurl.com/5telg |
|
From: <Ros...@ga...> - 2009-11-04 00:23:59
|
-----Original Message-----
From: Jeff Whitaker [mailto:js...@fa...]
Sent: Tuesday, 3 November 2009 02:53
To: Stephane Raynaud
Cc: Wilson Ross; mat...@li...
Subject: Re: [Matplotlib-users] basemap: Mask the ocean [SEC=UNCLASSIFIED]
Stephane Raynaud wrote:
> Ross,
>
>
> one way is to mask (or remove) ocean points using the _geoslib module
> provided with basemap.
> When you create a Basemap instance, you can retrieve all its polygons
> land (continents and islands) with "mymap.coastpolygons".
> Thay are stored as numpy arrays, and you can convert them to
> _geoslib.Polygon objects :
>
> poly = _geoslib.Polygon(N.asarray(coastalpoly).T)
>
> Then you loop over all Polygons and all (x,y) points and test :
>
> good_point = _geoslib.Point((x,y)).within(poly)
>
> Thanks to this method, you can choose you optimal resolution.
> You can even compute the intersection of you hexagons with coastal
> polygons using .intersection() and .area (instead of simply checking
> if the center is inside) and then reject points depending the fraction
> of the cell covered by land (or ocean).
Following Stephane's excellent suggestion, here's a prototype Basemap
method that checks to see if a point is on land or over water. Ross -
if you find it useful I'll include it in the next release. Note that it
will be slow for lots of points or large map regions.
-Jeff
--------------------------
Yes, Stephane's approach is nice and Jeff has nicely encapsulated the approach. I'll put that into my bag of tricks!
However it doesn't quite do what I want. My data does not have any points in the ocean; the hex binning creates hexagonal patches that extend out into the ocean. As a physicist I say "that's a representation artifact" and leave it at that, but my end-users want that 'bleed' into the ocean removed. My argument that they are losing data falls on deaf ears.
Here's an even more contrived example that improves on my poor previous attempt to explain the problem:
--------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
ll_lat = -38.10 # extent of area of interest
ll_lon = 145.06
ur_lat = -38.00
ur_lon = 145.16
# create data points all on land
fudge = ((ll_lon+0.05, ur_lat-0.00, 1000),
(ll_lon+0.05, ur_lat-0.01, 2000),
(ll_lon+0.05, ur_lat-0.02, 3000),
(ll_lon+0.05, ur_lat-0.03, 4000),
(ll_lon+0.04, ur_lat-0.025, 1000),
(ll_lon+0.043, ur_lat-0.036, 10000),
(ll_lon+0.047, ur_lat-0.041, 20000),
(ll_lon+0.07, ur_lat-0.07, 4000),
(ll_lon+0.08, ur_lat-0.08, 3000),
(ll_lon+0.09, ur_lat-0.09, 2000),
(ll_lon+0.10, ur_lat-0.10, 1000))
data = np.ones((3, len(fudge)))
for (i, (lon, lat, val)) in enumerate(fudge):
data[0,i] = lon
data[1,i] = lat
data[2,i] = val
# plot the data
fig = plt.figure()
m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f')
plt.hexbin(data[0,:], data[1,:], data[2,:], gridsize=5)
m.drawcoastlines(linewidth=0.5, color='k')
plt.show()
--------------------------------------------------------
None of the data points are on land, as can be seen if you change the 'gridsize' parameter to 100 or so (land is to the NE). However, when gridsize=5, the red hexagon in the middle extends out into the ocean. My users want that hexagon and others like it clipped at the coastline.
Crazy people, users.
Ross
|
|
From: Stephane R. <ste...@gm...> - 2009-11-04 09:24:44
|
Maybe using path clipping you can plot only over land like this :
----------------------------------------------------------------------------------
import numpy as np
from mpl_toolkits.basemap import Basemap
import pylab as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms
ll_lat = -38.10 # extent of area of interest
ll_lon = 145.06
ur_lat = -38.00
ur_lon = 145.16
# create data points all on land
fudge = ((ll_lon+0.05, ur_lat-0.00, 1000),
(ll_lon+0.05, ur_lat-0.01, 2000),
(ll_lon+0.05, ur_lat-0.02, 3000),
(ll_lon+0.05, ur_lat-0.03, 4000),
(ll_lon+0.04, ur_lat-0.025, 1000),
(ll_lon+0.043, ur_lat-0.036, 10000),
(ll_lon+0.047, ur_lat-0.041, 20000),
(ll_lon+0.07, ur_lat-0.07, 4000),
(ll_lon+0.08, ur_lat-0.08, 3000),
(ll_lon+0.09, ur_lat-0.09, 2000),
(ll_lon+0.10, ur_lat-0.10, 1000))
data = np.ones((3, len(fudge)))
for (i, (lon, lat, val)) in enumerate(fudge):
data[0,i] = lon
data[1,i] = lat
data[2,i] = val
# plot the data
fig = plt.figure()
m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f')
# +CHANGES
coll = plt.hexbin(data[0,:], data[1,:], data[2,:], gridsize=5)
ax = plt.gca()
for n, poly in enumerate(m.coastpolygons):
type = m.coastpolygontypes[n]
if type in [1,3]:
p = patches.Polygon(np.asarray(poly).T)
p.set_color('none')
ax.add_patch(p)
m.set_axes_limits(ax=ax)
coll.set_clip_path(p)
# -CHANGES
plt.show()
----------------------------------------------------------------------------------
On Wed, Nov 4, 2009 at 1:17 AM, <Ros...@ga...> wrote:
>
>
> -----Original Message-----
> From: Jeff Whitaker [mailto:js...@fa...]
> Sent: Tuesday, 3 November 2009 02:53
> To: Stephane Raynaud
> Cc: Wilson Ross; mat...@li...
> Subject: Re: [Matplotlib-users] basemap: Mask the ocean [SEC=UNCLASSIFIED]
>
> Stephane Raynaud wrote:
> > Ross,
> >
> >
> > one way is to mask (or remove) ocean points using the _geoslib module
> > provided with basemap.
> > When you create a Basemap instance, you can retrieve all its polygons
> > land (continents and islands) with "mymap.coastpolygons".
> > Thay are stored as numpy arrays, and you can convert them to
> > _geoslib.Polygon objects :
> >
> > poly = _geoslib.Polygon(N.asarray(coastalpoly).T)
> >
> > Then you loop over all Polygons and all (x,y) points and test :
> >
> > good_point = _geoslib.Point((x,y)).within(poly)
> >
> > Thanks to this method, you can choose you optimal resolution.
> > You can even compute the intersection of you hexagons with coastal
> > polygons using .intersection() and .area (instead of simply checking
> > if the center is inside) and then reject points depending the fraction
> > of the cell covered by land (or ocean).
>
> Following Stephane's excellent suggestion, here's a prototype Basemap
> method that checks to see if a point is on land or over water. Ross -
> if you find it useful I'll include it in the next release. Note that it
> will be slow for lots of points or large map regions.
>
> -Jeff
> --------------------------
>
> Yes, Stephane's approach is nice and Jeff has nicely encapsulated the
> approach. I'll put that into my bag of tricks!
>
> However it doesn't quite do what I want. My data does not have any points
> in the ocean; the hex binning creates hexagonal patches that extend out into
> the ocean. As a physicist I say "that's a representation artifact" and leave
> it at that, but my end-users want that 'bleed' into the ocean removed. My
> argument that they are losing data falls on deaf ears.
>
> Here's an even more contrived example that improves on my poor previous
> attempt to explain the problem:
> --------------------------------------------------------
> import numpy as np
> import matplotlib.pyplot as plt
> from mpl_toolkits.basemap import Basemap
>
> ll_lat = -38.10 # extent of area of interest
> ll_lon = 145.06
> ur_lat = -38.00
> ur_lon = 145.16
>
> # create data points all on land
> fudge = ((ll_lon+0.05, ur_lat-0.00, 1000),
> (ll_lon+0.05, ur_lat-0.01, 2000),
> (ll_lon+0.05, ur_lat-0.02, 3000),
> (ll_lon+0.05, ur_lat-0.03, 4000),
> (ll_lon+0.04, ur_lat-0.025, 1000),
> (ll_lon+0.043, ur_lat-0.036, 10000),
> (ll_lon+0.047, ur_lat-0.041, 20000),
> (ll_lon+0.07, ur_lat-0.07, 4000),
> (ll_lon+0.08, ur_lat-0.08, 3000),
> (ll_lon+0.09, ur_lat-0.09, 2000),
> (ll_lon+0.10, ur_lat-0.10, 1000))
>
> data = np.ones((3, len(fudge)))
> for (i, (lon, lat, val)) in enumerate(fudge):
> data[0,i] = lon
> data[1,i] = lat
> data[2,i] = val
>
> # plot the data
> fig = plt.figure()
> m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
> llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f')
> plt.hexbin(data[0,:], data[1,:], data[2,:], gridsize=5)
> m.drawcoastlines(linewidth=0.5, color='k')
> plt.show()
> --------------------------------------------------------
>
> None of the data points are on land, as can be seen if you change the
> 'gridsize' parameter to 100 or so (land is to the NE). However, when
> gridsize=5, the red hexagon in the middle extends out into the ocean. My
> users want that hexagon and others like it clipped at the coastline.
>
> Crazy people, users.
>
> Ross
>
--
Stephane Raynaud
|