About
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
|
About
Deeploy helps you to stay in control of your ML models. Easily deploy your models on our responsible AI platform, without compromising on transparency, control, and compliance. Nowadays, transparency, explainability, and security of AI models is more important than ever. Having a safe and secure environment to deploy your models enables you to continuously monitor your model performance with confidence and responsibility. Over the years, we experienced the importance of human involvement with machine learning. Only when machine learning systems are explainable and accountable, experts and consumers can provide feedback to these systems, overrule decisions when necessary and grow their trust. That’s why we created Deeploy.
|
About
ML.NET is a free, open source, and cross-platform machine learning framework designed for .NET developers to build custom machine learning models using C# or F# without leaving the .NET ecosystem. It supports various machine learning tasks, including classification, regression, clustering, anomaly detection, and recommendation systems. ML.NET integrates with other popular ML frameworks like TensorFlow and ONNX, enabling additional scenarios such as image classification and object detection. It offers tools like Model Builder and the ML.NET CLI, which utilize Automated Machine Learning (AutoML) to simplify the process of building, training, and deploying high-quality models. These tools automatically explore different algorithms and settings to find the best-performing model for a given scenario.
|
About
A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Data scientists, AI, and machine learning developers
|
Audience
Companies interested in an AI platform that creates the opportunities to implement explainable, accountable, and manageable Machine Learning models
|
Audience
.NET developers searching for a tool to incorporate machine learning capabilities into their applications using familiar languages and tools
|
Audience
Companies searching for a data science platform that improves productivity
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationMicrosoft
Founded: 1975
United States
azure.microsoft.com/en-us/products/machine-learning/
|
Company InformationDeeploy
Founded: 2020
Netherlands
www.deeploy.ml/
|
Company InformationMicrosoft
Founded: 1975
United States
dotnet.microsoft.com/en-us/apps/ai/ml-dotnet
|
Company InformationOracle
Founded: 1977
United States
www.oracle.com/data-science/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
|
|
|
|||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
Categories |
Categories |
|||
Machine Learning Features
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Data Labeling Features
Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management
|
||||||
Integrations
APERIO DataWise
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
Bing
BotCore
Cranium
Evvox
F#
|
Integrations
APERIO DataWise
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
Bing
BotCore
Cranium
Evvox
F#
|
Integrations
APERIO DataWise
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
Bing
BotCore
Cranium
Evvox
F#
|
Integrations
APERIO DataWise
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
Bing
BotCore
Cranium
Evvox
F#
|
|||
|
|
|
|
|