About
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot, ...), and a projection and mapping toolkit (Cartopy).
|
About
Dash & Dash Enterprise let you build & deploy analytic web apps using Python, R, and Julia. No JavaScript or DevOps required. Through Dash, the world's largest companies elevate AI, ML, and Python analytics to business users at 5% the cost of a full-stack development approach. Deliver apps and dashboards that run advanced analytics: ML, NLP, forecasting, computer vision and more. Work in the languages you love: Python, R, and Julia. Reduce costs by migrating legacy, per-seat licensed software to Dash Enterprise's open-core, unlimited end-user pricing model. Move faster by deploying and updating Dash apps without an IT or DevOps team. Create pixel-perfect dashboards & web apps, without writing any CSS. Scale effortlessly with Kubernetes. Support mission-critical Python applications with high availability.
|
About
ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details. ggplot2 is now over 10 years old and is used by hundreds of thousands of people to make millions of plots. That means, by-and-large, ggplot2 itself changes relatively little. When we do make changes, they will be generally to add new functions or arguments rather than changing the behavior of existing functions, and if we do make changes to existing behavior we will do them for compelling reasons. If you are new to ggplot2 you are better off starting with a systematic introduction, rather than trying to learn from reading individual documentation pages.
|
About
Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Developers looking for a Python library for creating static, animated, & interactive visualizations
|
Audience
Data science teams
|
Audience
Developers searching for a powerful Component Libraries solution
|
Audience
Engineers and data scientists requiring a solution to manage and improve their machine learning research
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationMatplotlib
matplotlib.org
|
Company InformationPlotly
Founded: 2013
Canada
plotly.com
|
Company Informationggplot2
ggplot2.tidyverse.org
|
Company Informationscikit-learn
United States
scikit-learn.org/stable/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
||||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Data Visualization Features
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
|
||||||
Integrations
Comet
DagsHub
Databricks Data Intelligence Platform
F#
Flower
Guild AI
Intel Tiber AI Studio
Julia
Kedro
Lyftrondata
|
Integrations
Comet
DagsHub
Databricks Data Intelligence Platform
F#
Flower
Guild AI
Intel Tiber AI Studio
Julia
Kedro
Lyftrondata
|
Integrations
Comet
DagsHub
Databricks Data Intelligence Platform
F#
Flower
Guild AI
Intel Tiber AI Studio
Julia
Kedro
Lyftrondata
|
Integrations
Comet
DagsHub
Databricks Data Intelligence Platform
F#
Flower
Guild AI
Intel Tiber AI Studio
Julia
Kedro
Lyftrondata
|
|||
|
|
|
|
|