Related Products
|
||||||
About
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries. The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code. NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.
|
About
Wing Python IDE was designed from the ground up for Python, to bring you a more productive development experience. Type less and let Wing worry about the details. Get immediate feedback by writing your Python code interactively in the live runtime. Easily navigate code and documentation. Avoid common errors and find problems early with assistance from Wing's deep Python code analysis. Keep code clean with smart refactoring and code quality inspection. Debug any Python code. Inspect debug data and try out bug fixes interactively without restarting your app. Work locally or on a remote host, VM, or container. Wingware's 21 years of Python IDE experience bring you a more Pythonic development environment. Wing was designed from the ground up for Python, written in Python, and is extensible with Python. So you can be more productive.
|
About
Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
Component Library solution for DevOps teams
|
Audience
Python developers seeking a tool to build applications
|
Audience
Engineers and data scientists requiring a solution to manage and improve their machine learning research
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
||||
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationNumPy
numpy.org
|
Company InformationWingware
Founded: 1999
United States
wingware.com
|
Company Informationscikit-learn
United States
scikit-learn.org/stable/
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
|
|
||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categories |
||||
Application Development Features
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development
|
||||||
Integrations
Amazon Web Services (AWS)
Avanzai
Dash
Databricks Data Intelligence Platform
Django
Docker
Emacs
Flower
Git
Google App Engine
|
Integrations
Amazon Web Services (AWS)
Avanzai
Dash
Databricks Data Intelligence Platform
Django
Docker
Emacs
Flower
Git
Google App Engine
|
Integrations
Amazon Web Services (AWS)
Avanzai
Dash
Databricks Data Intelligence Platform
Django
Docker
Emacs
Flower
Git
Google App Engine
|
||||
|
|
|
|