--- /dev/null
+/* md5.c - Functions to compute MD5 message digest of files or memory blocks
+ according to the definition of MD5 in RFC 1321 from April 1992.
+ Copyright (C) 1995-2021 Free Software Foundation, Inc.
+
+ NOTE: This source is derived from an old version taken from the GNU C
+ Library (glibc).
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 2, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
+
+/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <sys/types.h>
+
+#if STDC_HEADERS || defined _LIBC
+# include <stdlib.h>
+# include <string.h>
+#else
+# ifndef HAVE_MEMCPY
+# define memcpy(d, s, n) bcopy ((s), (d), (n))
+# endif
+#endif
+
+#include "ansidecl.h"
+#include "md5.h"
+
+#ifdef _LIBC
+# include <endian.h>
+# if __BYTE_ORDER == __BIG_ENDIAN
+# define WORDS_BIGENDIAN 1
+# endif
+#endif
+
+#ifdef WORDS_BIGENDIAN
+# define SWAP(n) \
+ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
+#else
+# define SWAP(n) (n)
+#endif
+
+
+/* This array contains the bytes used to pad the buffer to the next
+ 64-byte boundary. (RFC 1321, 3.1: Step 1) */
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
+
+
+/* Initialize structure containing state of computation.
+ (RFC 1321, 3.3: Step 3) */
+void
+md5_init_ctx (struct md5_ctx *ctx)
+{
+ ctx->A = (md5_uint32) 0x67452301;
+ ctx->B = (md5_uint32) 0xefcdab89;
+ ctx->C = (md5_uint32) 0x98badcfe;
+ ctx->D = (md5_uint32) 0x10325476;
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
+}
+
+/* Put result from CTX in first 16 bytes following RESBUF. The result
+ must be in little endian byte order.
+
+ IMPORTANT: RESBUF may not be aligned as strongly as MD5_UNIT32 so we
+ put things in a local (aligned) buffer first, then memcpy into RESBUF. */
+void *
+md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
+{
+ md5_uint32 buffer[4];
+
+ buffer[0] = SWAP (ctx->A);
+ buffer[1] = SWAP (ctx->B);
+ buffer[2] = SWAP (ctx->C);
+ buffer[3] = SWAP (ctx->D);
+
+ memcpy (resbuf, buffer, 16);
+
+ return resbuf;
+}
+
+/* Process the remaining bytes in the internal buffer and the usual
+ prolog according to the standard and write the result to RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+void *
+md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
+{
+ /* Take yet unprocessed bytes into account. */
+ md5_uint32 bytes = ctx->buflen;
+ md5_uint32 swap_bytes;
+ size_t pad;
+
+ /* Now count remaining bytes. */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
+
+ pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
+ memcpy (&ctx->buffer[bytes], fillbuf, pad);
+
+ /* Put the 64-bit file length in *bits* at the end of the buffer.
+ Use memcpy to avoid aliasing problems. On most systems, this
+ will be optimized away to the same code. */
+ swap_bytes = SWAP (ctx->total[0] << 3);
+ memcpy (&ctx->buffer[bytes + pad], &swap_bytes, sizeof (swap_bytes));
+ swap_bytes = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
+ memcpy (&ctx->buffer[bytes + pad + 4], &swap_bytes, sizeof (swap_bytes));
+
+ /* Process last bytes. */
+ md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
+
+ return md5_read_ctx (ctx, resbuf);
+}
+
+/* Compute MD5 message digest for bytes read from STREAM. The
+ resulting message digest number will be written into the 16 bytes
+ beginning at RESBLOCK. */
+int
+md5_stream (FILE *stream, void *resblock)
+{
+ /* Important: BLOCKSIZE must be a multiple of 64. */
+#define BLOCKSIZE 4096
+ struct md5_ctx ctx;
+ char buffer[BLOCKSIZE + 72];
+ size_t sum;
+
+ /* Initialize the computation context. */
+ md5_init_ctx (&ctx);
+
+ /* Iterate over full file contents. */
+ while (1)
+ {
+ /* We read the file in blocks of BLOCKSIZE bytes. One call of the
+ computation function processes the whole buffer so that with the
+ next round of the loop another block can be read. */
+ size_t n;
+ sum = 0;
+
+ /* Read block. Take care for partial reads. */
+ do
+ {
+ n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
+
+ sum += n;
+ }
+ while (sum < BLOCKSIZE && n != 0);
+ if (n == 0 && ferror (stream))
+ return 1;
+
+ /* If end of file is reached, end the loop. */
+ if (n == 0)
+ break;
+
+ /* Process buffer with BLOCKSIZE bytes. Note that
+ BLOCKSIZE % 64 == 0
+ */
+ md5_process_block (buffer, BLOCKSIZE, &ctx);
+ }
+
+ /* Add the last bytes if necessary. */
+ if (sum > 0)
+ md5_process_bytes (buffer, sum, &ctx);
+
+ /* Construct result in desired memory. */
+ md5_finish_ctx (&ctx, resblock);
+ return 0;
+}
+
+/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
+ result is always in little endian byte order, so that a byte-wise
+ output yields to the wanted ASCII representation of the message
+ digest. */
+void *
+md5_buffer (const char *buffer, size_t len, void *resblock)
+{
+ struct md5_ctx ctx;
+
+ /* Initialize the computation context. */
+ md5_init_ctx (&ctx);
+
+ /* Process whole buffer but last len % 64 bytes. */
+ md5_process_bytes (buffer, len, &ctx);
+
+ /* Put result in desired memory area. */
+ return md5_finish_ctx (&ctx, resblock);
+}
+
+
+void
+md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
+{
+ /* When we already have some bits in our internal buffer concatenate
+ both inputs first. */
+ if (ctx->buflen != 0)
+ {
+ size_t left_over = ctx->buflen;
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
+
+ memcpy (&ctx->buffer[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (left_over + add > 64)
+ {
+ md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
+ (left_over + add) & 63);
+ ctx->buflen = (left_over + add) & 63;
+ }
+
+ buffer = (const void *) ((const char *) buffer + add);
+ len -= add;
+ }
+
+ /* Process available complete blocks. */
+ if (len > 64)
+ {
+#if !_STRING_ARCH_unaligned || defined UBSAN_BOOTSTRAP
+/* To check alignment gcc has an appropriate operator. Other
+ compilers don't. */
+# if __GNUC__ >= 2
+# define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
+# else
+# define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
+# endif
+ if (UNALIGNED_P (buffer))
+ while (len > 64)
+ {
+ memcpy (ctx->buffer, buffer, 64);
+ md5_process_block (ctx->buffer, 64, ctx);
+ buffer = (const char *) buffer + 64;
+ len -= 64;
+ }
+ else
+#endif
+ {
+ md5_process_block (buffer, len & ~63, ctx);
+ buffer = (const void *) ((const char *) buffer + (len & ~63));
+ len &= 63;
+ }
+ }
+
+ /* Move remaining bytes in internal buffer. */
+ if (len > 0)
+ {
+ memcpy (ctx->buffer, buffer, len);
+ ctx->buflen = len;
+ }
+}
+
+
+/* These are the four functions used in the four steps of the MD5 algorithm
+ and defined in the RFC 1321. The first function is a little bit optimized
+ (as found in Colin Plumbs public domain implementation). */
+/* #define FF(b, c, d) ((b & c) | (~b & d)) */
+#define FF(b, c, d) (d ^ (b & (c ^ d)))
+#define FG(b, c, d) FF (d, b, c)
+#define FH(b, c, d) (b ^ c ^ d)
+#define FI(b, c, d) (c ^ (b | ~d))
+
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
+ It is assumed that LEN % 64 == 0. */
+
+void
+md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
+{
+ md5_uint32 correct_words[16];
+ const md5_uint32 *words = (const md5_uint32 *) buffer;
+ size_t nwords = len / sizeof (md5_uint32);
+ const md5_uint32 *endp = words + nwords;
+ md5_uint32 A = ctx->A;
+ md5_uint32 B = ctx->B;
+ md5_uint32 C = ctx->C;
+ md5_uint32 D = ctx->D;
+
+ /* First increment the byte count. RFC 1321 specifies the possible
+ length of the file up to 2^64 bits. Here we only compute the
+ number of bytes. Do a double word increment. */
+ ctx->total[0] += len;
+ ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
+
+ /* Process all bytes in the buffer with 64 bytes in each round of
+ the loop. */
+ while (words < endp)
+ {
+ md5_uint32 *cwp = correct_words;
+ md5_uint32 A_save = A;
+ md5_uint32 B_save = B;
+ md5_uint32 C_save = C;
+ md5_uint32 D_save = D;
+
+ /* First round: using the given function, the context and a constant
+ the next context is computed. Because the algorithms processing
+ unit is a 32-bit word and it is determined to work on words in
+ little endian byte order we perhaps have to change the byte order
+ before the computation. To reduce the work for the next steps
+ we store the swapped words in the array CORRECT_WORDS. */
+
+#define OP(a, b, c, d, s, T) \
+ do \
+ { \
+ a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
+ ++words; \
+ CYCLIC (a, s); \
+ a += b; \
+ } \
+ while (0)
+
+ /* It is unfortunate that C does not provide an operator for
+ cyclic rotation. Hope the C compiler is smart enough. */
+#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
+
+ /* Before we start, one word to the strange constants.
+ They are defined in RFC 1321 as
+
+ T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
+ */
+
+ /* Round 1. */
+ OP (A, B, C, D, 7, (md5_uint32) 0xd76aa478);
+ OP (D, A, B, C, 12, (md5_uint32) 0xe8c7b756);
+ OP (C, D, A, B, 17, (md5_uint32) 0x242070db);
+ OP (B, C, D, A, 22, (md5_uint32) 0xc1bdceee);
+ OP (A, B, C, D, 7, (md5_uint32) 0xf57c0faf);
+ OP (D, A, B, C, 12, (md5_uint32) 0x4787c62a);
+ OP (C, D, A, B, 17, (md5_uint32) 0xa8304613);
+ OP (B, C, D, A, 22, (md5_uint32) 0xfd469501);
+ OP (A, B, C, D, 7, (md5_uint32) 0x698098d8);
+ OP (D, A, B, C, 12, (md5_uint32) 0x8b44f7af);
+ OP (C, D, A, B, 17, (md5_uint32) 0xffff5bb1);
+ OP (B, C, D, A, 22, (md5_uint32) 0x895cd7be);
+ OP (A, B, C, D, 7, (md5_uint32) 0x6b901122);
+ OP (D, A, B, C, 12, (md5_uint32) 0xfd987193);
+ OP (C, D, A, B, 17, (md5_uint32) 0xa679438e);
+ OP (B, C, D, A, 22, (md5_uint32) 0x49b40821);
+
+ /* For the second to fourth round we have the possibly swapped words
+ in CORRECT_WORDS. Redefine the macro to take an additional first
+ argument specifying the function to use. */
+#undef OP
+#define OP(a, b, c, d, k, s, T) \
+ do \
+ { \
+ a += FX (b, c, d) + correct_words[k] + T; \
+ CYCLIC (a, s); \
+ a += b; \
+ } \
+ while (0)
+
+#define FX(b, c, d) FG (b, c, d)
+
+ /* Round 2. */
+ OP (A, B, C, D, 1, 5, (md5_uint32) 0xf61e2562);
+ OP (D, A, B, C, 6, 9, (md5_uint32) 0xc040b340);
+ OP (C, D, A, B, 11, 14, (md5_uint32) 0x265e5a51);
+ OP (B, C, D, A, 0, 20, (md5_uint32) 0xe9b6c7aa);
+ OP (A, B, C, D, 5, 5, (md5_uint32) 0xd62f105d);
+ OP (D, A, B, C, 10, 9, (md5_uint32) 0x02441453);
+ OP (C, D, A, B, 15, 14, (md5_uint32) 0xd8a1e681);
+ OP (B, C, D, A, 4, 20, (md5_uint32) 0xe7d3fbc8);
+ OP (A, B, C, D, 9, 5, (md5_uint32) 0x21e1cde6);
+ OP (D, A, B, C, 14, 9, (md5_uint32) 0xc33707d6);
+ OP (C, D, A, B, 3, 14, (md5_uint32) 0xf4d50d87);
+ OP (B, C, D, A, 8, 20, (md5_uint32) 0x455a14ed);
+ OP (A, B, C, D, 13, 5, (md5_uint32) 0xa9e3e905);
+ OP (D, A, B, C, 2, 9, (md5_uint32) 0xfcefa3f8);
+ OP (C, D, A, B, 7, 14, (md5_uint32) 0x676f02d9);
+ OP (B, C, D, A, 12, 20, (md5_uint32) 0x8d2a4c8a);
+
+#undef FX
+#define FX(b, c, d) FH (b, c, d)
+
+ /* Round 3. */
+ OP (A, B, C, D, 5, 4, (md5_uint32) 0xfffa3942);
+ OP (D, A, B, C, 8, 11, (md5_uint32) 0x8771f681);
+ OP (C, D, A, B, 11, 16, (md5_uint32) 0x6d9d6122);
+ OP (B, C, D, A, 14, 23, (md5_uint32) 0xfde5380c);
+ OP (A, B, C, D, 1, 4, (md5_uint32) 0xa4beea44);
+ OP (D, A, B, C, 4, 11, (md5_uint32) 0x4bdecfa9);
+ OP (C, D, A, B, 7, 16, (md5_uint32) 0xf6bb4b60);
+ OP (B, C, D, A, 10, 23, (md5_uint32) 0xbebfbc70);
+ OP (A, B, C, D, 13, 4, (md5_uint32) 0x289b7ec6);
+ OP (D, A, B, C, 0, 11, (md5_uint32) 0xeaa127fa);
+ OP (C, D, A, B, 3, 16, (md5_uint32) 0xd4ef3085);
+ OP (B, C, D, A, 6, 23, (md5_uint32) 0x04881d05);
+ OP (A, B, C, D, 9, 4, (md5_uint32) 0xd9d4d039);
+ OP (D, A, B, C, 12, 11, (md5_uint32) 0xe6db99e5);
+ OP (C, D, A, B, 15, 16, (md5_uint32) 0x1fa27cf8);
+ OP (B, C, D, A, 2, 23, (md5_uint32) 0xc4ac5665);
+
+#undef FX
+#define FX(b, c, d) FI (b, c, d)
+
+ /* Round 4. */
+ OP (A, B, C, D, 0, 6, (md5_uint32) 0xf4292244);
+ OP (D, A, B, C, 7, 10, (md5_uint32) 0x432aff97);
+ OP (C, D, A, B, 14, 15, (md5_uint32) 0xab9423a7);
+ OP (B, C, D, A, 5, 21, (md5_uint32) 0xfc93a039);
+ OP (A, B, C, D, 12, 6, (md5_uint32) 0x655b59c3);
+ OP (D, A, B, C, 3, 10, (md5_uint32) 0x8f0ccc92);
+ OP (C, D, A, B, 10, 15, (md5_uint32) 0xffeff47d);
+ OP (B, C, D, A, 1, 21, (md5_uint32) 0x85845dd1);
+ OP (A, B, C, D, 8, 6, (md5_uint32) 0x6fa87e4f);
+ OP (D, A, B, C, 15, 10, (md5_uint32) 0xfe2ce6e0);
+ OP (C, D, A, B, 6, 15, (md5_uint32) 0xa3014314);
+ OP (B, C, D, A, 13, 21, (md5_uint32) 0x4e0811a1);
+ OP (A, B, C, D, 4, 6, (md5_uint32) 0xf7537e82);
+ OP (D, A, B, C, 11, 10, (md5_uint32) 0xbd3af235);
+ OP (C, D, A, B, 2, 15, (md5_uint32) 0x2ad7d2bb);
+ OP (B, C, D, A, 9, 21, (md5_uint32) 0xeb86d391);
+
+ /* Add the starting values of the context. */
+ A += A_save;
+ B += B_save;
+ C += C_save;
+ D += D_save;
+ }
+
+ /* Put checksum in context given as argument. */
+ ctx->A = A;
+ ctx->B = B;
+ ctx->C = C;
+ ctx->D = D;
+}
--- /dev/null
+/* md5.h - Declaration of functions and data types used for MD5 sum
+ computing library functions.
+ Copyright (C) 1995-2021 Free Software Foundation, Inc.
+ NOTE: The canonical source of this file is maintained with the GNU C
+ Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 2, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#ifndef _MD5_H
+#define _MD5_H 1
+
+#include <stdio.h>
+
+#if defined HAVE_LIMITS_H || _LIBC
+# include <limits.h>
+#endif
+
+#include "ansidecl.h"
+
+/* The following contortions are an attempt to use the C preprocessor
+ to determine an unsigned integral type that is 32 bits wide. An
+ alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but
+ doing that would require that the configure script compile and *run*
+ the resulting executable. Locally running cross-compiled executables
+ is usually not possible. */
+
+#ifdef _LIBC
+# include <sys/types.h>
+typedef u_int32_t md5_uint32;
+typedef uintptr_t md5_uintptr;
+#elif defined (HAVE_SYS_TYPES_H) && defined (HAVE_STDINT_H)
+#include <stdint.h>
+#include <sys/types.h>
+typedef uint32_t md5_uint32;
+typedef uintptr_t md5_uintptr;
+#else
+# define INT_MAX_32_BITS 2147483647
+
+/* If UINT_MAX isn't defined, assume it's a 32-bit type.
+ This should be valid for all systems GNU cares about because
+ that doesn't include 16-bit systems, and only modern systems
+ (that certainly have <limits.h>) have 64+-bit integral types. */
+
+# ifndef INT_MAX
+# define INT_MAX INT_MAX_32_BITS
+# endif
+
+# if INT_MAX == INT_MAX_32_BITS
+ typedef unsigned int md5_uint32;
+# else
+# if SHRT_MAX == INT_MAX_32_BITS
+ typedef unsigned short md5_uint32;
+# else
+# if LONG_MAX == INT_MAX_32_BITS
+ typedef unsigned long md5_uint32;
+# else
+ /* The following line is intended to evoke an error.
+ Using #error is not portable enough. */
+ "Cannot determine unsigned 32-bit data type."
+# endif
+# endif
+# endif
+/* We have to make a guess about the integer type equivalent in size
+ to pointers which should always be correct. */
+typedef unsigned long int md5_uintptr;
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Structure to save state of computation between the single steps. */
+struct md5_ctx
+{
+ md5_uint32 A;
+ md5_uint32 B;
+ md5_uint32 C;
+ md5_uint32 D;
+
+ md5_uint32 total[2];
+ md5_uint32 buflen;
+ char buffer[128] ATTRIBUTE_ALIGNED_ALIGNOF(md5_uint32);
+};
+
+/*
+ * The following three functions are build up the low level used in
+ * the functions `md5_stream' and `md5_buffer'.
+ */
+
+/* Initialize structure containing state of computation.
+ (RFC 1321, 3.3: Step 3) */
+extern void md5_init_ctx (struct md5_ctx *ctx);
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is necessary that LEN is a multiple of 64!!! */
+extern void md5_process_block (const void *buffer, size_t len,
+ struct md5_ctx *ctx);
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is NOT required that LEN is a multiple of 64. */
+extern void md5_process_bytes (const void *buffer, size_t len,
+ struct md5_ctx *ctx);
+
+/* Process the remaining bytes in the buffer and put result from CTX
+ in first 16 bytes following RESBUF. The result is always in little
+ endian byte order, so that a byte-wise output yields to the wanted
+ ASCII representation of the message digest.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+extern void *md5_finish_ctx (struct md5_ctx *ctx, void *resbuf);
+
+
+/* Put result from CTX in first 16 bytes following RESBUF. The result is
+ always in little endian byte order, so that a byte-wise output yields
+ to the wanted ASCII representation of the message digest.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+extern void *md5_read_ctx (const struct md5_ctx *ctx, void *resbuf);
+
+
+/* Compute MD5 message digest for bytes read from STREAM. The
+ resulting message digest number will be written into the 16 bytes
+ beginning at RESBLOCK. */
+extern int md5_stream (FILE *stream, void *resblock);
+
+/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
+ result is always in little endian byte order, so that a byte-wise
+ output yields to the wanted ASCII representation of the message
+ digest. */
+extern void *md5_buffer (const char *buffer, size_t len, void *resblock);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
--- /dev/null
+/* sha1.c - Functions to compute SHA1 message digest of files or
+ memory blocks according to the NIST specification FIPS-180-1.
+
+ Copyright (C) 2000-2021 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 2, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+/* Written by Scott G. Miller
+ Credits:
+ Robert Klep <robert@ilse.nl> -- Expansion function fix
+*/
+
+#include <config.h>
+
+#include "sha1.h"
+
+#include <stddef.h>
+#include <string.h>
+
+#if USE_UNLOCKED_IO
+# include "unlocked-io.h"
+#endif
+
+#ifdef WORDS_BIGENDIAN
+# define SWAP(n) (n)
+#else
+# define SWAP(n) \
+ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
+#endif
+
+#define BLOCKSIZE 4096
+#if BLOCKSIZE % 64 != 0
+# error "invalid BLOCKSIZE"
+#endif
+
+/* This array contains the bytes used to pad the buffer to the next
+ 64-byte boundary. (RFC 1321, 3.1: Step 1) */
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
+
+
+/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
+ initialize it to the start constants of the SHA1 algorithm. This
+ must be called before using hash in the call to sha1_hash. */
+void
+sha1_init_ctx (struct sha1_ctx *ctx)
+{
+ ctx->A = 0x67452301;
+ ctx->B = 0xefcdab89;
+ ctx->C = 0x98badcfe;
+ ctx->D = 0x10325476;
+ ctx->E = 0xc3d2e1f0;
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
+}
+
+/* Put result from CTX in first 20 bytes following RESBUF. The result
+ must be in little endian byte order.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32-bit value. */
+void *
+sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
+{
+ ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
+ ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
+ ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
+ ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
+ ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
+
+ return resbuf;
+}
+
+/* Process the remaining bytes in the internal buffer and the usual
+ prolog according to the standard and write the result to RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32-bit value. */
+void *
+sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
+{
+ /* Take yet unprocessed bytes into account. */
+ sha1_uint32 bytes = ctx->buflen;
+ size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
+
+ /* Now count remaining bytes. */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
+
+ /* Put the 64-bit file length in *bits* at the end of the buffer. */
+ ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
+ ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
+
+ memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
+
+ /* Process last bytes. */
+ sha1_process_block (ctx->buffer, size * 4, ctx);
+
+ return sha1_read_ctx (ctx, resbuf);
+}
+
+/* Compute SHA1 message digest for bytes read from STREAM. The
+ resulting message digest number will be written into the 16 bytes
+ beginning at RESBLOCK. */
+int
+sha1_stream (FILE *stream, void *resblock)
+{
+ struct sha1_ctx ctx;
+ char buffer[BLOCKSIZE + 72];
+ size_t sum;
+
+ /* Initialize the computation context. */
+ sha1_init_ctx (&ctx);
+
+ /* Iterate over full file contents. */
+ while (1)
+ {
+ /* We read the file in blocks of BLOCKSIZE bytes. One call of the
+ computation function processes the whole buffer so that with the
+ next round of the loop another block can be read. */
+ size_t n;
+ sum = 0;
+
+ /* Read block. Take care for partial reads. */
+ while (1)
+ {
+ n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
+
+ sum += n;
+
+ if (sum == BLOCKSIZE)
+ break;
+
+ if (n == 0)
+ {
+ /* Check for the error flag IFF N == 0, so that we don't
+ exit the loop after a partial read due to e.g., EAGAIN
+ or EWOULDBLOCK. */
+ if (ferror (stream))
+ return 1;
+ goto process_partial_block;
+ }
+
+ /* We've read at least one byte, so ignore errors. But always
+ check for EOF, since feof may be true even though N > 0.
+ Otherwise, we could end up calling fread after EOF. */
+ if (feof (stream))
+ goto process_partial_block;
+ }
+
+ /* Process buffer with BLOCKSIZE bytes. Note that
+ BLOCKSIZE % 64 == 0
+ */
+ sha1_process_block (buffer, BLOCKSIZE, &ctx);
+ }
+
+ process_partial_block:;
+
+ /* Process any remaining bytes. */
+ if (sum > 0)
+ sha1_process_bytes (buffer, sum, &ctx);
+
+ /* Construct result in desired memory. */
+ sha1_finish_ctx (&ctx, resblock);
+ return 0;
+}
+
+/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
+ result is always in little endian byte order, so that a byte-wise
+ output yields to the wanted ASCII representation of the message
+ digest. */
+void *
+sha1_buffer (const char *buffer, size_t len, void *resblock)
+{
+ struct sha1_ctx ctx;
+
+ /* Initialize the computation context. */
+ sha1_init_ctx (&ctx);
+
+ /* Process whole buffer but last len % 64 bytes. */
+ sha1_process_bytes (buffer, len, &ctx);
+
+ /* Put result in desired memory area. */
+ return sha1_finish_ctx (&ctx, resblock);
+}
+
+void
+sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
+{
+ /* When we already have some bits in our internal buffer concatenate
+ both inputs first. */
+ if (ctx->buflen != 0)
+ {
+ size_t left_over = ctx->buflen;
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
+
+ memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (ctx->buflen > 64)
+ {
+ sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
+
+ ctx->buflen &= 63;
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy (ctx->buffer,
+ &((char *) ctx->buffer)[(left_over + add) & ~63],
+ ctx->buflen);
+ }
+
+ buffer = (const char *) buffer + add;
+ len -= add;
+ }
+
+ /* Process available complete blocks. */
+ if (len >= 64)
+ {
+#if !_STRING_ARCH_unaligned
+# define alignof(type) offsetof (struct { char c; type x; }, x)
+# define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
+ if (UNALIGNED_P (buffer))
+ while (len > 64)
+ {
+ sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
+ buffer = (const char *) buffer + 64;
+ len -= 64;
+ }
+ else
+#endif
+ {
+ sha1_process_block (buffer, len & ~63, ctx);
+ buffer = (const char *) buffer + (len & ~63);
+ len &= 63;
+ }
+ }
+
+ /* Move remaining bytes in internal buffer. */
+ if (len > 0)
+ {
+ size_t left_over = ctx->buflen;
+
+ memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
+ left_over += len;
+ if (left_over >= 64)
+ {
+ sha1_process_block (ctx->buffer, 64, ctx);
+ left_over -= 64;
+ memcpy (ctx->buffer, &ctx->buffer[16], left_over);
+ }
+ ctx->buflen = left_over;
+ }
+}
+
+/* --- Code below is the primary difference between md5.c and sha1.c --- */
+
+/* SHA1 round constants */
+#define K1 0x5a827999
+#define K2 0x6ed9eba1
+#define K3 0x8f1bbcdc
+#define K4 0xca62c1d6
+
+/* Round functions. Note that F2 is the same as F4. */
+#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
+#define F2(B,C,D) (B ^ C ^ D)
+#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
+#define F4(B,C,D) (B ^ C ^ D)
+
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
+ It is assumed that LEN % 64 == 0.
+ Most of this code comes from GnuPG's cipher/sha1.c. */
+
+void
+sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
+{
+ const sha1_uint32 *words = (const sha1_uint32*) buffer;
+ size_t nwords = len / sizeof (sha1_uint32);
+ const sha1_uint32 *endp = words + nwords;
+ sha1_uint32 x[16];
+ sha1_uint32 a = ctx->A;
+ sha1_uint32 b = ctx->B;
+ sha1_uint32 c = ctx->C;
+ sha1_uint32 d = ctx->D;
+ sha1_uint32 e = ctx->E;
+
+ /* First increment the byte count. RFC 1321 specifies the possible
+ length of the file up to 2^64 bits. Here we only compute the
+ number of bytes. Do a double word increment. */
+ ctx->total[0] += len;
+ ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
+
+#define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
+
+#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
+ ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
+ , (x[I&0x0f] = rol(tm, 1)) )
+
+#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
+ + F( B, C, D ) \
+ + K \
+ + M; \
+ B = rol( B, 30 ); \
+ } while(0)
+
+ while (words < endp)
+ {
+ sha1_uint32 tm;
+ int t;
+ for (t = 0; t < 16; t++)
+ {
+ x[t] = SWAP (*words);
+ words++;
+ }
+
+ R( a, b, c, d, e, F1, K1, x[ 0] );
+ R( e, a, b, c, d, F1, K1, x[ 1] );
+ R( d, e, a, b, c, F1, K1, x[ 2] );
+ R( c, d, e, a, b, F1, K1, x[ 3] );
+ R( b, c, d, e, a, F1, K1, x[ 4] );
+ R( a, b, c, d, e, F1, K1, x[ 5] );
+ R( e, a, b, c, d, F1, K1, x[ 6] );
+ R( d, e, a, b, c, F1, K1, x[ 7] );
+ R( c, d, e, a, b, F1, K1, x[ 8] );
+ R( b, c, d, e, a, F1, K1, x[ 9] );
+ R( a, b, c, d, e, F1, K1, x[10] );
+ R( e, a, b, c, d, F1, K1, x[11] );
+ R( d, e, a, b, c, F1, K1, x[12] );
+ R( c, d, e, a, b, F1, K1, x[13] );
+ R( b, c, d, e, a, F1, K1, x[14] );
+ R( a, b, c, d, e, F1, K1, x[15] );
+ R( e, a, b, c, d, F1, K1, M(16) );
+ R( d, e, a, b, c, F1, K1, M(17) );
+ R( c, d, e, a, b, F1, K1, M(18) );
+ R( b, c, d, e, a, F1, K1, M(19) );
+ R( a, b, c, d, e, F2, K2, M(20) );
+ R( e, a, b, c, d, F2, K2, M(21) );
+ R( d, e, a, b, c, F2, K2, M(22) );
+ R( c, d, e, a, b, F2, K2, M(23) );
+ R( b, c, d, e, a, F2, K2, M(24) );
+ R( a, b, c, d, e, F2, K2, M(25) );
+ R( e, a, b, c, d, F2, K2, M(26) );
+ R( d, e, a, b, c, F2, K2, M(27) );
+ R( c, d, e, a, b, F2, K2, M(28) );
+ R( b, c, d, e, a, F2, K2, M(29) );
+ R( a, b, c, d, e, F2, K2, M(30) );
+ R( e, a, b, c, d, F2, K2, M(31) );
+ R( d, e, a, b, c, F2, K2, M(32) );
+ R( c, d, e, a, b, F2, K2, M(33) );
+ R( b, c, d, e, a, F2, K2, M(34) );
+ R( a, b, c, d, e, F2, K2, M(35) );
+ R( e, a, b, c, d, F2, K2, M(36) );
+ R( d, e, a, b, c, F2, K2, M(37) );
+ R( c, d, e, a, b, F2, K2, M(38) );
+ R( b, c, d, e, a, F2, K2, M(39) );
+ R( a, b, c, d, e, F3, K3, M(40) );
+ R( e, a, b, c, d, F3, K3, M(41) );
+ R( d, e, a, b, c, F3, K3, M(42) );
+ R( c, d, e, a, b, F3, K3, M(43) );
+ R( b, c, d, e, a, F3, K3, M(44) );
+ R( a, b, c, d, e, F3, K3, M(45) );
+ R( e, a, b, c, d, F3, K3, M(46) );
+ R( d, e, a, b, c, F3, K3, M(47) );
+ R( c, d, e, a, b, F3, K3, M(48) );
+ R( b, c, d, e, a, F3, K3, M(49) );
+ R( a, b, c, d, e, F3, K3, M(50) );
+ R( e, a, b, c, d, F3, K3, M(51) );
+ R( d, e, a, b, c, F3, K3, M(52) );
+ R( c, d, e, a, b, F3, K3, M(53) );
+ R( b, c, d, e, a, F3, K3, M(54) );
+ R( a, b, c, d, e, F3, K3, M(55) );
+ R( e, a, b, c, d, F3, K3, M(56) );
+ R( d, e, a, b, c, F3, K3, M(57) );
+ R( c, d, e, a, b, F3, K3, M(58) );
+ R( b, c, d, e, a, F3, K3, M(59) );
+ R( a, b, c, d, e, F4, K4, M(60) );
+ R( e, a, b, c, d, F4, K4, M(61) );
+ R( d, e, a, b, c, F4, K4, M(62) );
+ R( c, d, e, a, b, F4, K4, M(63) );
+ R( b, c, d, e, a, F4, K4, M(64) );
+ R( a, b, c, d, e, F4, K4, M(65) );
+ R( e, a, b, c, d, F4, K4, M(66) );
+ R( d, e, a, b, c, F4, K4, M(67) );
+ R( c, d, e, a, b, F4, K4, M(68) );
+ R( b, c, d, e, a, F4, K4, M(69) );
+ R( a, b, c, d, e, F4, K4, M(70) );
+ R( e, a, b, c, d, F4, K4, M(71) );
+ R( d, e, a, b, c, F4, K4, M(72) );
+ R( c, d, e, a, b, F4, K4, M(73) );
+ R( b, c, d, e, a, F4, K4, M(74) );
+ R( a, b, c, d, e, F4, K4, M(75) );
+ R( e, a, b, c, d, F4, K4, M(76) );
+ R( d, e, a, b, c, F4, K4, M(77) );
+ R( c, d, e, a, b, F4, K4, M(78) );
+ R( b, c, d, e, a, F4, K4, M(79) );
+
+ a = ctx->A += a;
+ b = ctx->B += b;
+ c = ctx->C += c;
+ d = ctx->D += d;
+ e = ctx->E += e;
+ }
+}
--- /dev/null
+/* Declarations of functions and data types used for SHA1 sum
+ library functions.
+ Copyright (C) 2000-2021 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 3, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#ifndef SHA1_H
+# define SHA1_H 1
+
+#include <stdio.h>
+
+#if defined HAVE_LIMITS_H || _LIBC
+# include <limits.h>
+#endif
+
+#include "ansidecl.h"
+
+/* The following contortions are an attempt to use the C preprocessor
+ to determine an unsigned integral type that is 32 bits wide. An
+ alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but
+ doing that would require that the configure script compile and *run*
+ the resulting executable. Locally running cross-compiled executables
+ is usually not possible. */
+
+#ifdef _LIBC
+# include <sys/types.h>
+typedef u_int32_t sha1_uint32;
+typedef uintptr_t sha1_uintptr;
+#elif defined (HAVE_SYS_TYPES_H) && defined (HAVE_STDINT_H)
+#include <stdint.h>
+#include <sys/types.h>
+typedef uint32_t sha1_uint32;
+typedef uintptr_t sha1_uintptr;
+#else
+# define INT_MAX_32_BITS 2147483647
+
+/* If UINT_MAX isn't defined, assume it's a 32-bit type.
+ This should be valid for all systems GNU cares about because
+ that doesn't include 16-bit systems, and only modern systems
+ (that certainly have <limits.h>) have 64+-bit integral types. */
+
+# ifndef INT_MAX
+# define INT_MAX INT_MAX_32_BITS
+# endif
+
+# if INT_MAX == INT_MAX_32_BITS
+ typedef unsigned int sha1_uint32;
+# else
+# if SHRT_MAX == INT_MAX_32_BITS
+ typedef unsigned short sha1_uint32;
+# else
+# if LONG_MAX == INT_MAX_32_BITS
+ typedef unsigned long sha1_uint32;
+# else
+ /* The following line is intended to evoke an error.
+ Using #error is not portable enough. */
+ "Cannot determine unsigned 32-bit data type."
+# endif
+# endif
+# endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Structure to save state of computation between the single steps. */
+struct sha1_ctx
+{
+ sha1_uint32 A;
+ sha1_uint32 B;
+ sha1_uint32 C;
+ sha1_uint32 D;
+ sha1_uint32 E;
+
+ sha1_uint32 total[2];
+ sha1_uint32 buflen;
+ sha1_uint32 buffer[32];
+};
+
+
+/* Initialize structure containing state of computation. */
+extern void sha1_init_ctx (struct sha1_ctx *ctx);
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is necessary that LEN is a multiple of 64!!! */
+extern void sha1_process_block (const void *buffer, size_t len,
+ struct sha1_ctx *ctx);
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is NOT required that LEN is a multiple of 64. */
+extern void sha1_process_bytes (const void *buffer, size_t len,
+ struct sha1_ctx *ctx);
+
+/* Process the remaining bytes in the buffer and put result from CTX
+ in first 20 bytes following RESBUF. The result is always in little
+ endian byte order, so that a byte-wise output yields to the wanted
+ ASCII representation of the message digest.
+
+ IMPORTANT: On some systems it is required that RESBUF be correctly
+ aligned for a 32 bits value. */
+extern void *sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf);
+
+
+/* Put result from CTX in first 20 bytes following RESBUF. The result is
+ always in little endian byte order, so that a byte-wise output yields
+ to the wanted ASCII representation of the message digest.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+extern void *sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf);
+
+
+/* Compute SHA1 message digest for bytes read from STREAM. The
+ resulting message digest number will be written into the 20 bytes
+ beginning at RESBLOCK. */
+extern int sha1_stream (FILE *stream, void *resblock);
+
+/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
+ result is always in little endian byte order, so that a byte-wise
+ output yields to the wanted ASCII representation of the message
+ digest. */
+extern void *sha1_buffer (const char *buffer, size_t len, void *resblock);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif