402

How do I drop nan, inf, and -inf values from a DataFrame without resetting mode.use_inf_as_null?

Can I tell dropna to include inf in its definition of missing values so that the following works?

df.dropna(subset=["col1", "col2"], how="all")
0

10 Answers 10

716

First replace() infs with NaN:

df.replace([np.inf, -np.inf], np.nan, inplace=True)

and then drop NaNs via dropna():

df.dropna(subset=["col1", "col2"], how="all", inplace=True)

For example:

>>> df = pd.DataFrame({"col1": [1, np.inf, -np.inf], "col2": [2, 3, np.nan]})
>>> df
   col1  col2
0   1.0   2.0
1   inf   3.0
2  -inf   NaN

>>> df.replace([np.inf, -np.inf], np.nan, inplace=True)
>>> df
   col1  col2
0   1.0   2.0
1   NaN   3.0
2   NaN   NaN

>>> df.dropna(subset=["col1", "col2"], how="all", inplace=True)
>>> df
   col1  col2
0   1.0   2.0
1   NaN   3.0

The same method also works for Series.

Sign up to request clarification or add additional context in comments.

3 Comments

How can one "exchange" the inf values to a predefined int such as 0, in a certain column?
@3kstc use .replace(..., 0). To just do on columns you update those columns i.e. df[cols] = df[cols].replace(..., 0)
Maybe it's worth to specify that replace does not work in-place, so a new DataFrame is returned
90

DEPRECATED


With option context, this is possible without permanently setting use_inf_as_na. For example:

with pd.option_context('mode.use_inf_as_na', True):
    df = df.dropna(subset=['col1', 'col2'], how='all')

Of course it can be set to treat inf as NaN permanently with

pd.set_option('use_inf_as_na', True)

For older versions, replace use_inf_as_na with use_inf_as_null.

4 Comments

This is the most readable answer and is consequently the best, even though it violates in letter (but not in spirit) the original question.
Pandas as of (at least) 0.24: use_inf_as_null had been deprecated and will be removed in a future version. Use use_inf_as_na instead. Add to/update answer?
This one is a better choice to treat inf as nulls at the global setting levels instead of operational level. This could potentially saves time imputing the values first.
Note that this solution now throws a FutureWarning: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.
33

Use (fast and simple):

df = df[np.isfinite(df).all(1)]

This answer is based on DougR's answer in an other question. Here an example code:

import pandas as pd
import numpy as np
df=pd.DataFrame([1,2,3,np.nan,4,np.inf,5,-np.inf,6])
print('Input:\n',df,sep='')
df = df[np.isfinite(df).all(1)]
print('\nDropped:\n',df,sep='')

Result:

Input:
    0
0  1.0000
1  2.0000
2  3.0000
3     NaN
4  4.0000
5     inf
6  5.0000
7    -inf
8  6.0000

Dropped:
     0
0  1.0
1  2.0
2  3.0
4  4.0
6  5.0
8  6.0

2 Comments

I am getting this error - TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
not with my code, I guess!? Probably you try to process a column the unsupported types like strings
18

Here is another method using .loc to replace inf with nan on a Series:

s.loc[(~np.isfinite(s)) & s.notnull()] = np.nan

So, in response to the original question:

df = pd.DataFrame(np.ones((3, 3)), columns=list('ABC'))

for i in range(3): 
    df.iat[i, i] = np.inf

df
          A         B         C
0       inf  1.000000  1.000000
1  1.000000       inf  1.000000
2  1.000000  1.000000       inf

df.sum()
A    inf
B    inf
C    inf
dtype: float64

df.apply(lambda s: s[np.isfinite(s)].dropna()).sum()
A    2
B    2
C    2
dtype: float64

Comments

9

The above solution will modify the infs that are not in the target columns. To remedy that,

lst = [np.inf, -np.inf]
to_replace = {v: lst for v in ['col1', 'col2']}
df.replace(to_replace, np.nan)

Comments

8

Yet another solution would be to use the isin method. Use it to determine whether each value is infinite or missing and then chain the all method to determine if all the values in the rows are infinite or missing.

Finally, use the negation of that result to select the rows that don't have all infinite or missing values via boolean indexing.

all_inf_or_nan = df.isin([np.inf, -np.inf, np.nan]).all(axis='columns')
df[~all_inf_or_nan]

Comments

5

To remove both Nan, and inf using a single command use

df = df[ np.isfinite( df ).all( axis = 1) ]

If for some reason the above doesn't work for you, please try the following 2 steps:

df = df[ ~( df.isnull().any( axis = 1 ) ) ] #to remove nan
df = df[ ~( df.isin( [np.inf, -np.inf]).any(axis =1) )] #to remove inf

Comments

5

You can use pd.DataFrame.mask with np.isinf. You should ensure first your dataframe series are all of type float. Then use dropna with your existing logic.

print(df)

       col1      col2
0 -0.441406       inf
1 -0.321105      -inf
2 -0.412857  2.223047
3 -0.356610  2.513048

df = df.mask(np.isinf)

print(df)

       col1      col2
0 -0.441406       NaN
1 -0.321105       NaN
2 -0.412857  2.223047
3 -0.356610  2.513048

Comments

3

Unlike other answers here, this one line code worked for me.

import numpy as np
df= df[df['required_column_name']!= np.inf]

Comments

2

Just stumbled upon this one and I found a one line without replace or numpy:

df = pd.DataFrame(
    [[1, np.inf],
     [1, -np.inf],
     [1, 2]],
    columns=['a', 'b']
)
df.query("b not in [inf, -inf]")
>>> a  b
 2  1  2.0

For some version of pandas, one might need to use back ` around the name of the column b.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.