I am trying to solve the ivp y'=-y-5 * exp(-t) * sin(5 t), y(0)=1, using the following code:
%pylab inline
%matplotlib inline
from scipy.integrate import odeint
def mif(t, y):
return -y-5*exp(-t)*sin(5*t)
tspan = np.arange(0, 3, 0.000001)
y0 = 1.0
y_result = odeint(mif, y0, tspan)
y_result = y_result[:, 0] # convert the returned 2D array to a 1D array
plt.figure()
plt.plot(tspan, y_result)
plt.show()
However, the plot I get is wrong, it does not match what I obtain, say, with Matlab or Mathematica. It is actually different from the following alternative integration:
from scipy.integrate import ode
# initialize the 4th order Runge-Kutta solver
solver = ode(mif).set_integrator('dop853')
# initial value
y0 = 1.0
solver.set_initial_value(y0, 0)
values = 1000
t = np.linspace(0.0001, 3, values)
y = np.zeros(values)
for ii in range(values):
y[ii] = solver.integrate(t[ii])[0] #z[0]=u
which does yield correct result. What am I doing wrong with the odeint?