The Problem:
You are given an array m of size n, where each value of m is composed of a weight w, and a percentage p.
m = [m0, m1, m2, ... , mn] = [[m0w, m0p], [m1w, m1p], [m2w, m2p], ..., [mnw, mnp] ]
So we'll represent this in python as a list of lists.
We are then trying to find the minimum value of this function:
# chaima is so fuzzy how come?
def minimize_me(m):
t = 0
w = 1
for i in range(len(m)):
current = m[i]
t += w * current[0]
w *= current[1]
return t
where the only thing we can change about m is its ordering. (i. e. rearrange the elements of m in any way) Additionally, this needs to complete in better than O(n!).
Brute Force Solution:
import itertools
import sys
min_t = sys.maxint
min_permutation = None
for permutation in itertools.permutations(m):
t = minimize_me(list(permutation), 0, 1)
if t < min_t:
min_t = t
min_permutation = list(permutation)
Ideas On How To Optimize:
the idea:
Instead of finding the best order, see if we can find a way to compare two given values in m, when we know the state of the problem. (The code might explain this more clearly). If I can build this using a bottom-up approach (so, starting from the end, assuming I have no optimal solution) and I can create an equation that can compare two values in m and say one is definitively better than the other, then I can construct an optimal solution, by using that new value, and comparing the next set of values of m.
the code:
import itertools
def compare_m(a, b, v):
a_first = b[0] + b[1] * (a[0] + a[1] * v)
b_first = a[0] + a[1] * (b[0] + b[1] * v)
if a_first > b_first:
return a, a_first
else:
return b, b_first
best_ordering = []
v = 0
while len(m) > 1:
best_pair_t = sys.maxint
best_m = None
for pair in itertools.combinations(m, 2):
m, pair_t = compare_m(pair[0], pair[1], v)
if pair_t < best_pair_t:
best_pair_t = pair_t
best_m = m
best_ordering.append(best_m)
m.remove(best_m)
v = best_m[0] + best_m[1] * v
first = m[0]
best_ordering.append(first)
However, this is not working as intended. The first value is always right, and roughly 60-75% of the time, the entire solution is optimal. However, in some cases, it looks like the way I am changing the value v which then gets passed back into my compare is evaluating much higher than it should. Here's the script I'm using to test against:
import random
m = []
for i in range(0, 5):
w = random.randint(1, 1023)
p = random.uniform(0.01, 0.99)
m.append([w, p])
Here's a particular test case demonstrating the error:
m = [[493, 0.7181996086105675], [971, 0.19915848527349228], [736, 0.5184210526315789], [591, 0.5904761904761905], [467, 0.6161290322580645]]
optimal solution (just the indices) = [1, 4, 3, 2, 0] my solution (just the indices) = [4, 3, 1, 2, 0]
It feels very close, but I cannot for the life of me figure out what is wrong. Am I looking at this the wrong way? Does this seem like it's on the right track? Any help or feedback would be greatly appreciated!