5

How do I create a VGG-16 sequence for my data?

The data has the following :

model = Sequential() 
model.add(ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height))) model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1')) model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1')) model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1')) model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1')) model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1')) model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1))) 
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(Flatten()) 
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5)) 
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5)) 
model.add(Dense(1000, activation='softmax'))

sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')

train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(img_width, img_height),
        batch_size=32)

validation_generator = test_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(img_width, img_height),
        batch_size=32)

model.fit_generator(
        train_generator,
        samples_per_epoch=2000,
        nb_epoch=1,
        verbose=1,
        validation_data=validation_generator,
        nb_val_samples=800)

json_string = model.to_json()  
open('my_model_architecture.json','w').write(json_string) 
model.save_weights('Second_try.h5')

I got an error:

Exception: Error when checking model target: expected dense_3 to have shape (None, 32) but got array with shape (32, 2)

How do I change Dense to make it work?

2 Answers 2

7

I have 10 species,
I have solved the problem by
changing:

model.add(Dense(1000, activation='softmax'))

to:

model.add(Dense(10, activation='softmax'))

then it works.

Sign up to request clarification or add additional context in comments.

1 Comment

By 10 species do you mean 10 classes?
1

Here instead of 1000 you should have the total number of classes because it's the output layer.

model.add(Dense(1000, activation='softmax')) 

Also shape of labels (or Y_train/Y_test) should be (total number of classes, total number records).

This helped me resolve similar kind of error.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.