5

I am trying to develop a code to identify filled circle between number of empty circles.

I have already identified each circle in center ordinates. How to detect which circle is empty & Which circle is filled?

I have already develop this code

import numpy as np
import cv2
import math

img = cv2.imread("small.jpg",0)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)

circles =cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,60,param1=50,param2=30,minRadius=0,maxRadius=0)

circles = np.uint16(np.around(circles))
counter=0
correctC=[]
xC=[]
yC=[]

for i in circles[0,:]: 
    #cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
    #cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),2)
    cv2.putText(cimg,str(i[0])+","+str(i[1])+","+str(i[2]),(i[0],i[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3,(255,0,0),1,cv2.LINE_AA)
    correctC.append((i[0],i[1],i[2]))
    xC.append(i[0])
    yC.append(i[1])
    counter+=1

print "Circle Count is : " + str(counter)

xCS=sorted(xC)
yCS=sorted(yC)
xS=sorted(correctC, key=lambda correctC:correctC[0])

q1=sorted(xS[:4],key=lambda correctC: correctC[1])
q2=sorted(xS[4:8],key=lambda correctC: correctC[1])
q3=sorted(xS[8:12],key=lambda correctC: correctC[1])
q4=sorted(xS[12:16],key=lambda correctC: correctC[1])
q5=sorted(xS[16:20],key=lambda correctC: correctC[1])
q6=sorted(xS[20:24],key=lambda correctC: correctC[1])
q7=sorted(xS[24:28],key=lambda correctC: correctC[1])
q8=sorted(xS[28:32],key=lambda correctC: correctC[1])
q9=sorted(xS[32:],key=lambda correctC: correctC[1])

sortedTmp=[q1,q2,q3,q4,q5,q6,q7,q8,q9]
sorted=[]

for i in sortedTmp:
    for j in i:
        sorted.append(j)

for i in range(36):
    cv2.putText(cimg,str(i),(sorted[i][0],sorted[i][1]), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),3,cv2.LINE_AA)

cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

These are my input & output images for above code.. enter image description here enter image description here

Thanks in advance..

1
  • 1
    Count the number of black pixels present in every circle using numpy.count(). If it is high => it is a filled circle or else => empty circle Commented Apr 15, 2017 at 6:44

1 Answer 1

1

Steps involved :

  • Get the minimum circle radius from the third col of circles info from cv2.HoughCircles.

  • Use 2D convolution on the inverted image, with the intention of finding blackened-blobs that would have greater value than the background and the whitened-blobs upon convolution.

  • Get the convoluted output at the circle centers again obtained in circles as the third col. Use a half threshold to decide between that blob was originally blackened or whitened.

The edited part of the implementation -

from scipy.signal import convolve2d

sortedTmp=[q1,q2,q3,q4,q5,q6,q7,q8,q9]
sorted1=[]

for i in sortedTmp:
    for j in i:
        sorted1.append(j)

sorted_circles = np.array(sorted1)

circle_radius = sorted_circles[...,-1].min()
kernel = np.ones((2*circle_radius,2*circle_radius),dtype=int)
out0 = convolve2d(255-img, kernel,'same')
detected_vals = out0[sorted_circles[...,1], sorted_circles[...,0]]
detected_vals -= detected_vals.min()
mask = detected_vals>detected_vals.max()/2        

for i in range(36):
    cv2.putText(cimg,str(i),(sorted1[i][0],sorted1[i][1]), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),3,cv2.LINE_AA)
    if mask[i]==1:
        cv2.putText(cimg,"B",(sorted1[i][0],sorted1[i][1]-28), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(255,0,0),1,cv2.LINE_AA)
    else:
        cv2.putText(cimg,"W",(sorted1[i][0],sorted1[i][1]-28), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(255,0,0),1,cv2.LINE_AA)

cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

Output -

enter image description here

To be more precise, since we are dealing with circles, we could use circular mask as kernel. Thus, to bring in that criteria -

def circle_mask(r) : #r - radius of circular mask
    y,x = np.ogrid[-r:r+1, -r:r+1]
    return x*x + y*y <= r*r

R = 1+2*((circle_radius-1)//2) # Get odd number for radius
kernel = circle_mask(R).astype(int)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.