I have the following dataframe. It is OHLC one-minute data. Obviously I need the T column to become and index in order to use time-series functionallity
C H L O T V
13712 6873.0 6873.0 6873.0 6873.0 2018-01-13T17:17:00 799.448421
13713 6878.0 6878.0 6875.0 6875.0 2018-01-13T17:18:00 1707.578666
13714 6880.0 6880.0 6825.0 6825.0 2018-01-13T17:21:00 481.245707
13715 6876.0 6876.0 6876.0 6876.0 2018-01-13T17:22:00 839.177283
13716 6870.0 6878.0 6830.0 6878.0 2018-01-13T17:23:00 4336.830277
I used:
df['T'] = pd.to_datetime(df['T'])
So far so good! The T column is now recognised as a date
Check:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 13717 entries, 1970-01-01 00:00:00 to 1970-01-01 00:00:00.000013716
Data columns (total 7 columns):
BV 13717 non-null float64
C 13717 non-null float64
H 13717 non-null float64
L 13717 non-null float64
O 13717 non-null float64
T 13717 non-null datetime64[ns]
V 13717 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 857.3 KB
And now comes the fun and unexplainable part:
df.set_index(df['T'])
C H L O T V
T
2018-01-03 17:27:00 5710.0 5710.0 5663.0 5667.0 2018-01-03 17:27:00 3863.030204
2018-01-03 17:28:00 5704.0 5710.0 5663.0 5710.0 2018-01-03 17:28:00 1208.627542
2018-01-03 17:29:00 5699.0 5699.0 5663.0 5663.0 2018-01-03 17:29:00 1755.123688
Still looks good, but when I check the type of index I get:
RangeIndex(start=0, stop=13717, step=1)
And now if I try:
df.index = pd.to_datetime(df.index)
I end up with:
DatetimeIndex([ '1970-01-01 00:00:00',
'1970-01-01 00:00:00.000000001',
'1970-01-01 00:00:00.000000002',
'1970-01-01 00:00:00.000000003',
'1970-01-01 00:00:00.000000004' and so on...
which is evidently wrong.
The questions are: 1. Why don't I get the normal DateTimeIndex if I am converting a date to index?
- How can I convert that RangeIndex to DateTimeIndex with correct timestamps?
Thanks!
df = df.set_index('T')or usedf.set_index('T', inplace=True)csvas input data, simpliest isdf = pd.read_csv(file, parse_dates=['T'], index_col=['T'])