You can't do this in general.*
You can do something equivalent for most of the builtin operators (like your + example), and a handful of builtin functions (like abs). They're implemented by calling special methods on the operands, as described in the reference docs.
Of course that means writing a whole bunch of special methods for each of your types—but it wouldn't be too hard to write a base class (or decorator or metaclass, if that doesn't fit your design) that implements all those special methods in one place, by calling the subclass's __arg__ and then doing the default thing:
class ArgyBase:
def __add__(self, other):
return self.__arg__() + other
def __radd__(self, other):
return other + self.__arg__()
# ... and so on
And if you want to extend that to a whole suite of functions that you create yourself, you can give them all similar special-method protocols similar to the builtin ones, and expand your base class to cover them. Or you can just short-circuit that and use the __arg__ protocol directly in those functions. To avoid lots of repetition, I'd use a decorator for that.
def argify(func):
def _arg(arg):
try:
return arg.__arg__()
except AttributeError:
return arg
@functools.wraps(func)
def wrapper(*args, **kwargs):
args = map(_arg, args)
kwargs = {kw: _arg(arg) for arg in args}
return func(*args, **kwargs)
return wrapper
@argify
def spam(a, b):
return a + 2 * b
And if you really want to, you can go around wrapping other people's functions:
sin = argify(math.sin)
… or even monkeypatching their modules:
requests.get = argify(requests.get)
… or monkeypatching a whole module dynamically a la early versions of gevent, but I'm not going to even show that, because at this point we're getting into don't-do-this-for-multiple-reasons territory.
You mentioned in a comment that you'd like to do this to a bunch of someone else's functions without having to specify them in advance, if possible. Does that mean every function that ever gets constructed in any module you import? Well, you can even do that if you're willing to create an import hook, but that seems like an even worse idea. Explaining how to write an import hook and either AST-patch each function creation node or insert wrappers around the bytecode or the like is way too much to get into here, but if your research abilities exceed your common sense, you can figure it out. :)
As a side note, if I were doing this, I wouldn't call the method __arg__, I'd call it either arg or _arg. Besides being reserved for future use by the language, the dunder-method style implies things that aren't true here (special-method lookup instead of a normal call, you can search for it in the docs, etc.).
* There are languages where you can, such as C++, where a combination of implicit casting and typed variables instead of typed values means you can get a method called on your objects just by giving them an odd type with an implicit conversion operator to the expected type.
__add__( for+ 1) and quite a few intermediary classes...fon a function first calls its__arg__method. (Although you're probably better off calling itargor_arg.)