1

I wanted to have vertical gradient for each bar of the seaborn barplot/countplot , horizontal gradient across bars
(source: pydata.org)

#to reproduce above plot
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical")))
titanic = sns.load_dataset("titanic")
sns.countplot(x="deck", data=titanic, palette="Greens_d")
plt.show()

This image has horizontal gradient but I want the gradient to be vertical, like the linear down or linear up gradient in Excel https://support.office.com/en-us/article/add-a-gradient-color-to-a-shape-11cf6392-723c-4be8-840a-b2dab4b2ba3e

See the example here from https://matplotlib.org/gallery/lines_bars_and_markers/gradient_bar.html for vertical gradient Example of vertical gradient Neglect the background, colour is immaterial.

p.s. Newbie to seaborn

1 Answer 1

0

I based this on ImportanceOfBeingErnest's answer here using good old fashioned Matplotlib. Essentially looping through the bar containers in Seaborn's countplot and using imshow with a gradient. Hope this helps!

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

def gradientbars(bars):
    grad = np.atleast_2d(np.linspace(0,1,256)).T # Gradient of your choice

    rectangles = bars.containers[0]
    # ax = bars[0].axes
    fig, ax = plt.subplots()

    xList = []
    yList = []
    for rectangle in rectangles:
        x0 = rectangle._x0
        x1 = rectangle._x1
        y0 = rectangle._y0
        y1 = rectangle._y1

        xList.extend([x0,x1])
        yList.extend([y0,y1])

        ax.imshow(grad, extent=[x0,x1,y0,y1], aspect="auto", zorder=0)

    ax.axis([min(xList), max(xList), min(yList), max(yList)*1.1]) # *1.1 to add some buffer to top of plot

    return fig,ax


sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical")))

# Load dataset
titanic = sns.load_dataset("titanic")

# Make Seaborn countplot
seabornAxHandle = sns.countplot(x="deck", data=titanic, palette="Greens_d")
plt.show() # Vertical bars with horizontal gradient

# Call gradientbars to make vertical gradient barplot using Seaborn ax
figVerticalGradient, axVerticalGradient = gradientbars(seabornAxHandle)

# Styling using the returned ax
axVerticalGradient.xaxis.grid(False)
axVerticalGradient.yaxis.grid(True)

# Labeling plot to match Seaborn
labels=titanic['deck'].dropna().unique().to_list() # Chaining to get tick labels as a list
labels.sort()
plt.ylabel('count')
plt.xlabel('deck')
plt.xticks(range(0,len(labels)), labels)  # Set locations and labels

plt.show() # Vertical bars with vertical gradient

Output from Seaborn countplot: Output from Seaborn countplot

Output with vertical gradient bars: Output with gradient bars

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.