6

I have a pandas data frame with values as below

ProcessID1 UserID Date Month Year Time 248 Tony 29 4 2017 23:30:56 436 Jeff 28 4 2017 20:02:19 500 Greg 4 5 2017 11:48:29 I would like to know is there any way I can combine columns of Date,Month&Year & time to a pd.datetimeformat?

2

3 Answers 3

15

Use to_datetime with automatic convert column Day,Month,Year with add times converted to_timedelta:

df['Datetime'] = pd.to_datetime(df.rename(columns={'Date':'Day'})[['Day','Month','Year']]) + \
                 pd.to_timedelta(df['Time'])

Another solutions are join all column converted to strings first:

df['Datetime'] = pd.to_datetime(df[['Date','Month','Year', 'Time']]
                   .astype(str).apply(' '.join, 1), format='%d %m %Y %H:%M:%S')
df['Datetime']  = (pd.to_datetime(df['Year'].astype(str) + '-' +
                                  df['Month'].astype(str) + '-' +
                                  df['Date'].astype(str) + ' ' +
                                  df['Time']))

print (df)
   ProcessID1 UserID  Date  Month  Year      Time            Datetime
0         248   Tony    29      4  2017  23:30:56 2017-04-29 23:30:56
1         436   Jeff    28      4  2017  20:02:19 2017-04-28 20:02:19
2         500   Greg     4      5  2017  11:48:29 2017-05-04 11:48:29

Last if need remove these columns:

df = df.drop(['Date','Month','Year', 'Time'], axis=1)
print (df)
   ProcessID1 UserID            Datetime
0         248   Tony 2017-04-29 23:30:56
1         436   Jeff 2017-04-28 20:02:19
2         500   Greg 2017-05-04 11:48:29
Sign up to request clarification or add additional context in comments.

8 Comments

I tried with the above code. it is giving me KeyError: ('Day', 'Month', 'Year')
@JitheshErancheri - What is print (df.columns.tolist()) ? Error means there is no some columns. Or maybe use some old pandas version? first solution is implemented in pandas 0.18.1
it gives 'UserID', 'Date', 'Month', 'Year', 'Time'
It seems you forget for rename - df.rename(columns={'Date':'Day'}) in first solution.
I can share with you
|
1

Concatenate the columns together to a string format and use pd.to_datetime to convert to datetime.

import pandas as pd
import io

txt = """
ProcessID1  UserID   Date   Month    Year     Time 
        248    Tony     29       4   2017  23:30:56
        436    Jeff     28       4   2017  20:02:19
        500    Greg      4       5   2017  11:48:29
"""

df = pd.read_csv(io.StringIO(txt), sep="[\t ,]+")

df['Datetime'] =  pd.to_datetime(df['Date'].astype(str) \
                                 + '-' + df['Month'].astype(str) \
                                 + '-' + df['Year'].astype(str) \
                                 + ' ' + df['Time'], 
                                 format='%d-%m-%Y %H:%M:%S')
df

Comments

0
import pandas as pd

You can also do this by using apply() method:-

df['Datetime']=df[['Year','Month','Date']].astype(str).apply('-'.join,1)+' '+df['Time']

Finally convert 'Datetime' to datetime dtype by using pandas to_datetime() method:-

df['Datetime']=pd.to_datetime(df['Datetime'])

Output of df:

    ProcessID1  UserID   Date   Month   Year    Time        Datetime
0   248          Tony     29    4       2017    23:30:56    2017-04-29 23:30:56
1   436          Jeff     28    4       2017    20:02:19    2017-04-28 20:02:19
2   500          Greg      4    5       2017    11:48:29    2017-05-04 11:48:29

Now if you want to remove 'Date','Month','Year' and 'Time' column then use:-

df=df.drop(columns=['Date','Month','Year', 'Time'])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.