If features and features2 contain the features of the same batch of images, that is features[i] is the same image of features2[i] for each i, then it would make sense to group the features in a single array using the numpy function concatenate():
newArray = np.concatenate((features, features2), axis=3)
Where 3 is the axis along which the arrays will be concatenated. In this case, you'll end up with a new array having dimension (14637, 10, 10, 103).
However, if they refer to completely different batches of images and you would like to merge them on the first axis such that the 14637 images of features2 are placed after the first 14637 image, then, there no way you can end up with an array, since numpy array are structured as matrix, non as a list of objects.
For instance, if you try to execute:
> a = np.array([[0, 1, 2]]) // shape = (1, 3)
> b = np.array([[0, 1]]) // shape = (1, 2)
> c = np.concatenate((a, b), axis=0)
Then, you'll get:
ValueError: all the input array dimensions except for the concatenation axis must match exactly
since you are concatenating along axis = 0 but axis 1's dimensions differ.
concatenatein Keras does the same asconcatenatein Numpy except with Keras tensors instead of Numpy arrays. So if you need to merge two tensors in a neural network you would use the Keras version. I'm glad the solution worked for you though.