My input is simply a matrix with 441 rows and 216 columns :
The 216 feature values
The 441 trials
Total class label 6
I am trying to train my data on a CNN model:
model = Sequential()
model.add(Conv1D(128, 5, input_shape=(441, 216)))
model.add(Activation('relu'))
model.add(Conv1D(128, 5,padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(128, 5,padding='same',))
model.add(Activation('relu'))
model.add(Conv1D(128, 5,padding='same',))
model.add(Activation('relu'))
model.add(Conv1D(128, 5,padding='same',))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Conv1D(128, 5,padding='same',))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation('softmax'))
opt = keras.optimizers.rmsprop(lr=0.00001, decay=1e-6)
model.compile(loss='categorical_crossentropy',
optimizer=opt,metrics=['accuracy'])
This throws the error: ValueError: Error when checking model input: expected conv1d_1_input to have shape (None, 441, 216) but got array with shape (1, 441, 216)
How can I feed in my input to the CNN ?