What about something like:
import collections
class GeneratorSequence(collections.Sequence):
def __init__(self, func, size):
self._func = func
self._len = size
def __len__(self):
return self._len
def __getitem__(self, i):
if 0 <= i < self._len:
return self._func(i)
else:
raise IndexError
def __iter__(self):
for i in range(self._len):
yield self[i]
This would work with np.searchsorted(), e.g.:
import numpy as np
gen_seq = GeneratorSequence(lambda x: x ** 2, 100)
np.searchsorted(gen_seq, 9)
# 3
You could also write your own binary search function, you do not really need NumPy in this case, and it can actually be beneficial:
def bin_search(seq, item):
first = 0
last = len(seq) - 1
found = False
while first <= last and not found:
midpoint = (first + last) // 2
if seq[midpoint] == item:
first = midpoint
found = True
else:
if item < seq[midpoint]:
last = midpoint - 1
else:
first = midpoint + 1
return first
Which gives identical results:
all(bin_search(gen_seq, i) == np.searchsorted(gen_seq, i) for i in range(100))
# True
Incidentally, this is also WAY faster:
gen_seq = GeneratorSequence(lambda x: x ** 2, 1000000)
%timeit np.searchsorted(gen_seq, 10000)
# 1 loop, best of 3: 1.23 s per loop
%timeit bin_search(gen_seq, 10000)
# 100000 loops, best of 3: 16.1 µs per loop
i. Then I think it's easier/simpler to write your own binary search function.numpyfor the binary-search, but it is likely that you need your own class implementing an on-the-fly sequence implementing thecollections.abc.Sequenceinterface.