A Pointer to Array
An array is a distinct type in C. It is a sequential collections of elements of a given type. In C a 2D array is actually an array of 1D arrays. In your case, you have an array [4] of int [5] (e.g. 4 - 5-elements arrays of int commonly called a 2D array of int)
Where new programmers normally get confused is how an array is treated on access. When an array is accessed, it is converted to a pointer to the first element. C11 Standard - 6.3.2.1 Other Operands - Lvalues, arrays, and function designators(p3) (pay attention to the 4 exceptions)
In the case of a 1D array, that is simple, the array is converted to a pointer to the first element of the array (the pointer is simply int*). In the case of a 2D array, the same holds true, the array is converted to a pointer to the first element -- but that first element is a 1D array of 5-int. (the pointer is a pointer-to-array of int [5], formally int (*)[5])
You can pass the 2D array (in your case) as a parameter of either int grid[4][5], int grid[][5], or to reflect that the array is converted to a pointer to the first element, int (*grid)[5]. The key is you must always provide the number of elements in the final dimension for your array (with additional '*' allowed for circumstances not relevant here) The 5 (or number of elements) must be an integer constant which is known at compile-time unless using a Variable Length Array (VLA), which are the topic for a separate discussion.
The same rule that on access an array is converted to a pointer to its first element applies to each dimension in your array, be it a 2D array or a 6D array. C11 Standard - 6.5.2.1 Array subscripting(p3)
Additionally, know the difference between a pointer-to-array (e.g. int (*grid)[5]) and an array-of-pointers (e.g. int *grid[5]). The parenthesis are required due to C Operator Precedence, the [..] has higher precedence than '*' in this case, so to require that *grid (in int *grid[5]) be evaluated as a pointer (instead of as an array grid[5]) you enclose it is parenthesis (*grid).
Thus resulting in a pointer-to-array of int [5], (int (*grid)[5]) instead of an array-of-pointers to int (5 of them) with int *grid[5].
A Pointer to Pointer
Contrast that with a pointer-to-pointer (e.g. int **, commonly called a double-pointer). You have two-levels of indirection represented by the two **. The pointer itself is a single-pointer -- to what? (another pointer, not to an array). You will generally use a double-pointer by first allocating a block of memory to hold some number of pointers, such as when you are dynamically allocating for an unknown number of allocated objects. This can be an unknown number of rows of an unknown number of columns of int or it can be an unknown number of strings, or a unknown number of structs, etc.. The key is your first level of indirection points to memory containing pointers.
Then for each of the available pointers you can allocate a block (e.g. in your case to hold 5 int and then assign the starting address for that block of memory to your first available pointer). You continue allocating for your columns (or strings or structs) and assigning the beginning address to each of your available pointers in sequence. When done, you can access the individual elements in your allocated collection using the same indexing you would for a 2D array. The difference between such a collection and a 2D array of arrays -- is the memory pointed to by each pointer need not be sequential in memory.
Telling Them Apart
The key to knowing which to use is to ask "What does my pointer point to?" Does it point to a pointer? Or, does it point to an array? If it points to another pointer, then you have a pointer-to-pointer. If the thing pointed to is an array, then you have a pointer-to-array. With that, you know what you need as a parameter.
Why the SegFault with int**
Type controls pointer arithmetic. Recall above, int** is a pointer-to-pointer, so how big is a pointer? (sizeof (a_pointer) - usually 8-bytes on x86_64, or 4-bytes on x86). So grid[1][0] is only one-pointer (8-bytes) away from grid[0][0]. What about the pointer-to-array? Each increment in the first index is a sizeof (int[5]) apart from the first. So in the case of a 4x5 array grid[1][0] is 5 * sizeof(int) (20-bytes) apart from grid[0][0].
So when attempting to access your array of arrays, using int**, beginning with grid[1][3] (or grid[1][4] on a 32-bit box) you are reading one-past the end of the 1st row of values. (you have offset by 8-bytes (one-pointer 8-bytes - skipping 2-int), placing you just before the 3rd integer in the 1st row, then offset 3 more integers placing you at what would be grid[0][5] one past the last value in the 1st row grid[0][4]. (this compounds with each row increment) The result is undefined and anything can happen.
When you pass the appropriate pointer-to-array, each increment of the row-index offsets by 20-bytes, placing you at the beginning of the next 1D array of values so iterating over each column remains within the bounds of that 1D array.
Think through it, and if you have further questions, just let me know and I'm happy to help further.
int[][]is not the same asint **int** grid-->int (*grid)[5]int** gridis not a 2D array.gridis a pointer.