Compare values for missing values, then get first consecutive value and replace another by DataFrame.where, forward filling missing values and last replace original missing values:
df = pd.DataFrame({'Value':[np.nan,1.15,2.15,3.15,np.nan,2.1,2.2,2.3]})
m = df.notna()
df1 = df.where(m.ne(m.shift())).ffill().where(m)
print (df1)
Value
0 NaN
1 1.15
2 1.15
3 1.15
4 NaN
5 2.10
6 2.10
7 2.10
Details:
print (m.ne(m.shift()))
Value
0 True
1 True
2 False
3 False
4 True
5 True
6 False
7 False
print (df.where(m.ne(m.shift())))
Value
0 NaN
1 1.15
2 NaN
3 NaN
4 NaN
5 2.10
6 NaN
7 NaN
print (df.where(m.ne(m.shift())).ffill())
Value
0 NaN
1 1.15
2 1.15
3 1.15
4 1.15
5 2.10
6 2.10
7 2.10