I would like to present the data visualisation which includes line chart and bar chart. Could you guys tell me what kind of mistakes I have made? I guess if it because the moving weighted average caused this issue?
rollmean_covid <- covid_ts1 %>% filter(Nation == "England") %>% select(date, daily_pos_num) %>%
mutate(pos_num01 = rollmean(daily_pos_num, k = 3, fill = NA),
pos_num02 = rollmean(daily_pos_num, k = 5, fill = NA),
pos_num03 = rollmean(daily_pos_num, k = 7, fill = NA),
pos_num04 = rollmean(daily_pos_num, k = 10, fill = NA),
pos_num05 = rollmean(daily_pos_num, k = 14, fill = NA))
rollmean_covid_metric <- rollmean_covid %>% gather(metric, number, pos_num01:pos_num05)
rollmean_covid_metric %>% filter(metric == "pos_num01") %>%
ggplot() +
geom_line(aes(date, number), col = "Blue") +
geom_col(aes(date, number), fill = "orange", alpha = 0.7)
edited1: the dataset overview is provided bellow.
# A tibble: 10 x 7
date daily_pos_num pos_num01 pos_num02 pos_num03 pos_num04 pos_num05
<date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2020-01-30 2 NA NA NA NA NA
2 2020-01-30 0 0.667 NA NA NA NA
3 2020-01-31 0 0 0.4 NA NA NA
4 2020-01-31 0 0 0 0.286 NA NA
5 2020-02-01 0 0 0 0 0.3 NA
6 2020-02-01 0 0 0 0.143 0.1 NA
7 2020-02-02 0 0 0.2 0.143 0.1 0.286
8 2020-02-02 0 0.333 0.2 0.143 0.2 0.143
9 2020-02-03 1 0.333 0.2 0.143 0.2 0.143
10 2020-02-03 0 0.333 0.2 0.286 0.2 0.143

