I have 2 sets of split data frames from a big data frame. Say for example,
import pandas as pd, numpy as np
np.random.seed([3,1415])
ind1 = ['A_p','B_p','C_p','D_p','E_p','F_p','N_p','M_p','O_p','Q_p']
col1 = ['sap1','luf','tur','sul','sul2','bmw','aud']
df1 = pd.DataFrame(np.random.randint(10, size=(10, 7)), columns=col1,index=ind1)
ind2 = ['G_l','I_l','J_l','K_l','L_l','M_l','R_l','N_l']
col2 = ['sap1','luf','tur','sul','sul2','bmw','aud']
df2 = pd.DataFrame(np.random.randint(20, size=(8, 7)), columns=col2,index=ind2)
# Split the dataframes into two parts
pc_1,pc_2 = np.array_split(df1, 2)
lnc_1,lnc_2 = np.array_split(df2, 2)
And now, I need to concatenate each split data frames from df1 (pc1, pc2) with each data frames from df2 (ln_1,lnc_2). Currently, I am doing it following,
# concatenate each split data frame pc1 with lnc1
pc1_lnc_1 =pd.concat([pc_1,lnc_1])
pc1_lnc_2 =pd.concat([pc_1,lnc_2])
pc2_lnc1 =pd.concat([pc_2,lnc_1])
pc2_lnc2 =pd.concat([pc_2,lnc_2])
On every concatenated data frame I need to run a correlation analysis function, for example,
correlation(pc1_lnc_1)
And I wanted to save the results separately, for example,
pc1_lnc1= correlation(pc1_lnc_1)
pc1_lnc2= correlation(pc1_lnc_2)
......
pc1_lnc1.to_csv(output,sep='\t')
The question is if there is a way I can automate the above concatenation part, rather than coding it in every line using some sort of loop, currently for every concatenated data frame. I am separately running the function correlation. And I have a pretty long list of the split data frame.