I'm trying to understand vectorized indexing in xarray by following this example from the docs:
import xarray as xr
import numpy as np
da = xr.DataArray(np.arange(12).reshape((3, 4)), dims=['x', 'y'],
coords={'x': [0, 1, 2], 'y': ['a', 'b', 'c', 'd']})
ind_x = xr.DataArray([0, 1], dims=['x'])
ind_y = xr.DataArray([0, 1], dims=['y'])
The output of the array da is as follows:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
So far so good. Now in the example there are shown two ways of indexing. Orthogonal (not interested in this case) and vectorized (what I want). For the vectorized indexing the following is shown:
In [37]: da[ind_x, ind_x] # vectorized indexing
Out[37]:
<xarray.DataArray (x: 2)>
array([0, 5])
Coordinates:
y (x) <U1 'a' 'b'
* x (x) int64 0 1
The result seems to be what I want, but this feels very strange to me. ind_x (which in theory refers to dims=['x']) is being passed twice but somehow is capable of indexing what appears to be both in the x and y dims. As far as I understand the x dim would be the rows and y dim would be the columns, is that correct? How come the same ind_x is capable of accessing both the rows and the cols?
This seems to be the concept I need for my problem, but can't understand how it works or how to extend it to more dimensions. I was expecting this result to be given by da[ind_x, ind_y] however that seems to yield the orthogonal indexing surprisingly enough.