1

I have a json file with the following schema:

root
 |-- count: long (nullable = true)
 |-- results: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- address: string (nullable = true)
 |    |    |-- auto_task_assignment: boolean (nullable = true)
 |    |    |-- deleted_at: string (nullable = true)
 |    |    |-- has_issues: boolean (nullable = true)
 |    |    |-- has_timetable: boolean (nullable = true)
 |    |    |-- id: long (nullable = true)
 |    |    |-- name: string (nullable = true)
 |    |    |-- opening_hours: string (nullable = true)
 |    |    |-- phone_number: string (nullable = true)
 |    |    |-- position_id: long (nullable = true)
 |    |    |-- show_technical_time: boolean (nullable = true)
 |    |    |-- structure_id: long (nullable = true)
 |    |    |-- subcontract_number: string (nullable = true)
 |    |    |-- task_modification: boolean (nullable = true)
 |    |    |-- updated_at: string (nullable = true)

I want to parse results array to obtain DataFrame with all columns listed in schema When trying to use select statement, I'm given an error. df.select("results.*").show() error message: AnalysisException: Can only star expand struct data types. Attribute: `ArrayBuffer(results)` Could you please help me how to filter this json?

sample data:

{'count': 11, 'next': None, 'previous': None, 'results': [{'id': 1, 'name': 'Samodzielny Publiczny Szpital Kliniczny Nr 1 PUM', 'external_id': None, 'structure_id': 1, 'address': '71-252 Szczecin, Ul. Unii Lubelskiej 1 ', 'phone_number': '+48123456789', 'opening_hours': 'pn-pt: 9:00-17:00', 'deleted_at': '2021-05-27T13:02:12.026410+02:00', 'updated_at': '2021-05-27T13:02:12.026417+02:00', 'position_id': None, 'has_timetable': True, 'auto_task_assignment': True, 'task_modification': False, 'has_issues': False, 'show_technical_time': False, 'subcontract_number': None}, {'id': 2, 'name': 'Szpital polowy we wrocławiu', 'external_id': None, 'structure_id': 2, 'address': 'North Montytown, 0861 Greenholt Crescent', 'phone_number': '+48505505505', 'opening_hours': '', 'deleted_at': None, 'updated_at': '2021-11-18T16:15:06.608476+01:00', 'position_id': 49, 'has_timetable': True, 'auto_task_assignment': False, 'task_modification': True, 'has_issues': True, 'show_technical_time': True, 'subcontract_number': '191919919; 191919191991; 19991919919; 1919919 191919919; 191919191991; 19991919919; 1919919....191919919; 191919191991; 19991919919; 1919919 191919919; 191919191991; 19991919919; 1919919191919919; 191919191991; 19991919919; 1919919 191919919; 1919191-255c'}, {'id': 3, 'name': 'Test', 'external_id': None, 'structure_id': 17, 'address': 'ul. Śliczna', 'phone_number': '+48500100107', 'opening_hours': '', 'deleted_at': None, 'updated_at': '2021-11-04T14:22:04.712607+01:00', 'position_id': 33, 'has_timetable': True, 'auto_task_assignment': True, 'task_modification': True, 'has_issues': True, 'show_technical_time': True, 'subcontract_number': '07001234'}]}

I have found a workaround using Pandas DataFrame, but my aim is to do it using Spark

enum = 0
for i in df['results']:
    if enum == 0 :
        df2 = pd.DataFrame(i, index=[0])
        enum=+1
    else:
        df2 = df2.append(i, ignore_index=True)

Expected output is to keep column count that will repeat the same value on each row and extract all columns from results struct, expected schema below:

root
 |-- count: long (nullable = true)
 |-- address: string (nullable = true)
 |-- auto_task_assignment: boolean (nullable = true)
 |-- deleted_at: string (nullable = true)
 |-- has_issues: boolean (nullable = true)
 |-- has_timetable: boolean (nullable = true)
 |-- id: long (nullable = true)
 |-- name: string (nullable = true)
 |-- opening_hours: string (nullable = true)
 |-- phone_number: string (nullable = true)
 |-- position_id: long (nullable = true)
 |-- show_technical_time: boolean (nullable = true)
 |-- structure_id: long (nullable = true)
 |-- subcontract_number: string (nullable = true)
 |-- task_modification: boolean (nullable = true)
 |-- updated_at: string (nullable = true)
0

1 Answer 1

3

You would need to explode the results array before un-nesting struct fields.

df.withColumn("results", F.explode(F.col("results"))).select("results.*").show()

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.