Python client
Manage unstructured vector stores in PostgreSQL.
Supabase provides a Python client called vecs for managing unstructured vector stores. This client provides a set of useful tools for creating and querying collections in Postgres using the pgvector extension.
Quick start
Let's see how Vecs works using a local database. Make sure you have the Supabase CLI installed on your machine.
Initialize your project
Start a local Postgres instance in any folder using the init and start commands. Make sure you have Docker running!
1# Initialize your project2supabase init34# Start Postgres5supabase startCreate a collection
Inside a Python shell, run the following commands to create a new collection called "docs", with 3 dimensions.
1import vecs23# create vector store client4vx = vecs.create_client("postgresql://postgres:postgres@localhost:54322/postgres")56# create a collection of vectors with 3 dimensions7docs = vx.get_or_create_collection(name="docs", dimension=3)Add embeddings
Now we can insert some embeddings into our "docs" collection using the upsert() command:
1import vecs23# create vector store client4docs = vecs.get_or_create_collection(name="docs", dimension=3)56# a collection of vectors with 3 dimensions7vectors=[8 ("vec0", [0.1, 0.2, 0.3], {"year": 1973}),9 ("vec1", [0.7, 0.8, 0.9], {"year": 2012})10]1112# insert our vectors13docs.upsert(vectors=vectors)Query the collection
You can now query the collection to retrieve a relevant match:
1import vecs23docs = vecs.get_or_create_collection(name="docs", dimension=3)45# query the collection filtering metadata for "year" = 20126docs.query(7 data=[0.4,0.5,0.6], # required8 limit=1, # number of records to return9 filters={"year": {"$eq": 2012}}, # metadata filters10)Deep dive
For a more in-depth guide on vecs collections, see API.
Resources
- Official Vecs Documentation: https://supabase.github.io/vecs/api
- Source Code: https://github.com/supabase/vecs