Delimited payload token filter
The older name delimited_payload_filter is deprecated and should not be used with new indices. Use delimited_payload instead.
Separates a token stream into tokens and payloads based on a specified delimiter.
For example, you can use the delimited_payload filter with a | delimiter to split the|1 quick|2 fox|3 into the tokens the, quick, and fox with respective payloads of 1, 2, and 3.
This filter uses Lucene’s DelimitedPayloadTokenFilter.
A payload is user-defined binary data associated with a token position and stored as base64-encoded bytes.
Elasticsearch does not store token payloads by default. To store payloads, you must:
- Set the
term_vectormapping parameter towith_positions_payloadsorwith_positions_offsets_payloadsfor any field storing payloads. - Use an index analyzer that includes the
delimited_payloadfilter
You can view stored payloads using the term vectors API.
The following analyze API request uses the delimited_payload filter with the default | delimiter to split the|0 brown|10 fox|5 is|0 quick|10 into tokens and payloads.
GET _analyze
{
"tokenizer": "whitespace",
"filter": ["delimited_payload"],
"text": "the|0 brown|10 fox|5 is|0 quick|10"
}
The filter produces the following tokens:
[ the, brown, fox, is, quick ]
Note that the analyze API does not return stored payloads. For an example that includes returned payloads, see Return stored payloads.
The following create index API request uses the delimited-payload filter to configure a new custom analyzer.
PUT delimited_payload
{
"settings": {
"analysis": {
"analyzer": {
"whitespace_delimited_payload": {
"tokenizer": "whitespace",
"filter": [ "delimited_payload" ]
}
}
}
}
}
delimiter- (Optional, string) Character used to separate tokens from payloads. Defaults to
|. encoding- (Optional, string) Data type for the stored payload. Valid values are:
float- (Default) Float
identity- Characters
int- Integer
To customize the delimited_payload filter, duplicate it to create the basis for a new custom token filter. You can modify the filter using its configurable parameters.
For example, the following create index API request uses a custom delimited_payload filter to configure a new custom analyzer. The custom delimited_payload filter uses the + delimiter to separate tokens from payloads. Payloads are encoded as integers.
PUT delimited_payload_example
{
"settings": {
"analysis": {
"analyzer": {
"whitespace_plus_delimited": {
"tokenizer": "whitespace",
"filter": [ "plus_delimited" ]
}
},
"filter": {
"plus_delimited": {
"type": "delimited_payload",
"delimiter": "+",
"encoding": "int"
}
}
}
}
}
Use the create index API to create an index that:
- Includes a field that stores term vectors with payloads.
- Uses a custom index analyzer with the
delimited_payloadfilter.
PUT text_payloads
{
"mappings": {
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_payloads",
"analyzer": "payload_delimiter"
}
}
},
"settings": {
"analysis": {
"analyzer": {
"payload_delimiter": {
"tokenizer": "whitespace",
"filter": [ "delimited_payload" ]
}
}
}
}
}
Add a document containing payloads to the index.
POST text_payloads/_doc/1
{
"text": "the|0 brown|3 fox|4 is|0 quick|10"
}
Use the term vectors API to return the document’s tokens and base64-encoded payloads.
GET text_payloads/_termvectors/1
{
"fields": [ "text" ],
"payloads": true
}
The API returns the following response:
{
"_index": "text_payloads",
"_id": "1",
"_version": 1,
"found": true,
"took": 8,
"term_vectors": {
"text": {
"field_statistics": {
"sum_doc_freq": 5,
"doc_count": 1,
"sum_ttf": 5
},
"terms": {
"brown": {
"term_freq": 1,
"tokens": [
{
"position": 1,
"payload": "QEAAAA=="
}
]
},
"fox": {
"term_freq": 1,
"tokens": [
{
"position": 2,
"payload": "QIAAAA=="
}
]
},
"is": {
"term_freq": 1,
"tokens": [
{
"position": 3,
"payload": "AAAAAA=="
}
]
},
"quick": {
"term_freq": 1,
"tokens": [
{
"position": 4,
"payload": "QSAAAA=="
}
]
},
"the": {
"term_freq": 1,
"tokens": [
{
"position": 0,
"payload": "AAAAAA=="
}
]
}
}
}
}
}