PostgreSQL Source Code git master
plancat.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * plancat.c
4 * routines for accessing the system catalogs
5 *
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/util/plancat.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include <math.h>
19
20#include "access/genam.h"
21#include "access/htup_details.h"
22#include "access/nbtree.h"
23#include "access/sysattr.h"
24#include "access/table.h"
25#include "access/tableam.h"
26#include "access/transam.h"
27#include "access/xlog.h"
28#include "catalog/catalog.h"
29#include "catalog/heap.h"
30#include "catalog/pg_am.h"
31#include "catalog/pg_proc.h"
34#include "foreign/fdwapi.h"
35#include "miscadmin.h"
36#include "nodes/makefuncs.h"
37#include "nodes/nodeFuncs.h"
38#include "nodes/supportnodes.h"
39#include "optimizer/cost.h"
40#include "optimizer/optimizer.h"
41#include "optimizer/plancat.h"
43#include "parser/parsetree.h"
48#include "storage/bufmgr.h"
49#include "tcop/tcopprot.h"
50#include "utils/builtins.h"
51#include "utils/lsyscache.h"
52#include "utils/partcache.h"
53#include "utils/rel.h"
54#include "utils/snapmgr.h"
55#include "utils/syscache.h"
56
57/* GUC parameter */
59
60/* Hook for plugins to get control in get_relation_info() */
62
63typedef struct NotnullHashEntry
64{
65 Oid relid; /* OID of the relation */
66 Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
68
69
71 Relation relation, bool inhparent);
73 List *idxExprs);
75 Oid relationObjectId, RelOptInfo *rel,
76 bool include_noinherit,
77 bool include_notnull,
78 bool include_partition);
80 Relation heapRelation);
82 Relation relation);
84 Relation relation);
86 Relation relation);
87static void set_baserel_partition_key_exprs(Relation relation,
88 RelOptInfo *rel);
90 RelOptInfo *rel);
91
92
93/*
94 * get_relation_info -
95 * Retrieves catalog information for a given relation.
96 *
97 * Given the Oid of the relation, return the following info into fields
98 * of the RelOptInfo struct:
99 *
100 * min_attr lowest valid AttrNumber
101 * max_attr highest valid AttrNumber
102 * indexlist list of IndexOptInfos for relation's indexes
103 * statlist list of StatisticExtInfo for relation's statistic objects
104 * serverid if it's a foreign table, the server OID
105 * fdwroutine if it's a foreign table, the FDW function pointers
106 * pages number of pages
107 * tuples number of tuples
108 * rel_parallel_workers user-defined number of parallel workers
109 *
110 * Also, add information about the relation's foreign keys to root->fkey_list.
111 *
112 * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 * cases these are left as zeroes, but sometimes we need to compute attr
114 * widths here, and we may as well cache the results for costsize.c.
115 *
116 * If inhparent is true, all we need to do is set up the attr arrays:
117 * the RelOptInfo actually represents the appendrel formed by an inheritance
118 * tree, and so the parent rel's physical size and index information isn't
119 * important for it, however, for partitioned tables, we do populate the
120 * indexlist as the planner uses unique indexes as unique proofs for certain
121 * optimizations.
122 */
123void
124get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 RelOptInfo *rel)
126{
127 Index varno = rel->relid;
128 Relation relation;
129 bool hasindex;
130 List *indexinfos = NIL;
131
132 /*
133 * We need not lock the relation since it was already locked, either by
134 * the rewriter or when expand_inherited_rtentry() added it to the query's
135 * rangetable.
136 */
137 relation = table_open(relationObjectId, NoLock);
138
139 /*
140 * Relations without a table AM can be used in a query only if they are of
141 * special-cased relkinds. This check prevents us from crashing later if,
142 * for example, a view's ON SELECT rule has gone missing. Note that
143 * table_open() already rejected indexes and composite types; spell the
144 * error the same way it does.
145 */
146 if (!relation->rd_tableam)
147 {
148 if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
151 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 errmsg("cannot open relation \"%s\"",
153 RelationGetRelationName(relation)),
154 errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 }
156
157 /* Temporary and unlogged relations are inaccessible during recovery. */
158 if (!RelationIsPermanent(relation) && RecoveryInProgress())
160 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 errmsg("cannot access temporary or unlogged relations during recovery")));
162
165 rel->reltablespace = RelationGetForm(relation)->reltablespace;
166
167 Assert(rel->max_attr >= rel->min_attr);
168 rel->attr_needed = (Relids *)
169 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 rel->attr_widths = (int32 *)
171 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172
173 /*
174 * Record which columns are defined as NOT NULL. We leave this
175 * unpopulated for non-partitioned inheritance parent relations as it's
176 * ambiguous as to what it means. Some child tables may have a NOT NULL
177 * constraint for a column while others may not. We could work harder and
178 * build a unioned set of all child relations notnullattnums, but there's
179 * currently no need. The RelOptInfo corresponding to the !inh
180 * RangeTblEntry does get populated.
181 */
182 if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184
185 /*
186 * Estimate relation size --- unless it's an inheritance parent, in which
187 * case the size we want is not the rel's own size but the size of its
188 * inheritance tree. That will be computed in set_append_rel_size().
189 */
190 if (!inhparent)
191 estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 &rel->pages, &rel->tuples, &rel->allvisfrac);
193
194 /* Retrieve the parallel_workers reloption, or -1 if not set. */
196
197 /*
198 * Make list of indexes. Ignore indexes on system catalogs if told to.
199 * Don't bother with indexes from traditional inheritance parents. For
200 * partitioned tables, we need a list of at least unique indexes as these
201 * serve as unique proofs for certain planner optimizations. However,
202 * let's not discriminate here and just record all partitioned indexes
203 * whether they're unique indexes or not.
204 */
205 if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 hasindex = false;
208 else
209 hasindex = relation->rd_rel->relhasindex;
210
211 if (hasindex)
212 {
213 List *indexoidlist;
214 LOCKMODE lmode;
215 ListCell *l;
216
217 indexoidlist = RelationGetIndexList(relation);
218
219 /*
220 * For each index, we get the same type of lock that the executor will
221 * need, and do not release it. This saves a couple of trips to the
222 * shared lock manager while not creating any real loss of
223 * concurrency, because no schema changes could be happening on the
224 * index while we hold lock on the parent rel, and no lock type used
225 * for queries blocks any other kind of index operation.
226 */
227 lmode = root->simple_rte_array[varno]->rellockmode;
228
229 foreach(l, indexoidlist)
230 {
231 Oid indexoid = lfirst_oid(l);
232 Relation indexRelation;
234 IndexAmRoutine *amroutine = NULL;
235 IndexOptInfo *info;
236 int ncolumns,
237 nkeycolumns;
238 int i;
239
240 /*
241 * Extract info from the relation descriptor for the index.
242 */
243 indexRelation = index_open(indexoid, lmode);
244 index = indexRelation->rd_index;
245
246 /*
247 * Ignore invalid indexes, since they can't safely be used for
248 * queries. Note that this is OK because the data structure we
249 * are constructing is only used by the planner --- the executor
250 * still needs to insert into "invalid" indexes, if they're marked
251 * indisready.
252 */
253 if (!index->indisvalid)
254 {
255 index_close(indexRelation, NoLock);
256 continue;
257 }
258
259 /*
260 * If the index is valid, but cannot yet be used, ignore it; but
261 * mark the plan we are generating as transient. See
262 * src/backend/access/heap/README.HOT for discussion.
263 */
264 if (index->indcheckxmin &&
267 {
268 root->glob->transientPlan = true;
269 index_close(indexRelation, NoLock);
270 continue;
271 }
272
273 info = makeNode(IndexOptInfo);
274
275 info->indexoid = index->indexrelid;
276 info->reltablespace =
277 RelationGetForm(indexRelation)->reltablespace;
278 info->rel = rel;
279 info->ncolumns = ncolumns = index->indnatts;
280 info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281
282 info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
283 info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
284 info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
285 info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
286 info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
287
288 for (i = 0; i < ncolumns; i++)
289 {
290 info->indexkeys[i] = index->indkey.values[i];
291 info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 }
293
294 for (i = 0; i < nkeycolumns; i++)
295 {
296 info->opfamily[i] = indexRelation->rd_opfamily[i];
297 info->opcintype[i] = indexRelation->rd_opcintype[i];
298 info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 }
300
301 info->relam = indexRelation->rd_rel->relam;
302
303 /*
304 * We don't have an AM for partitioned indexes, so we'll just
305 * NULLify the AM related fields for those.
306 */
307 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 {
309 /* We copy just the fields we need, not all of rd_indam */
310 amroutine = indexRelation->rd_indam;
311 info->amcanorderbyop = amroutine->amcanorderbyop;
312 info->amoptionalkey = amroutine->amoptionalkey;
313 info->amsearcharray = amroutine->amsearcharray;
314 info->amsearchnulls = amroutine->amsearchnulls;
315 info->amcanparallel = amroutine->amcanparallel;
316 info->amhasgettuple = (amroutine->amgettuple != NULL);
317 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 amroutine->amrestrpos != NULL);
321 info->amcostestimate = amroutine->amcostestimate;
322 Assert(info->amcostestimate != NULL);
323
324 /* Fetch index opclass options */
325 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326
327 /*
328 * Fetch the ordering information for the index, if any.
329 */
330 if (info->relam == BTREE_AM_OID)
331 {
332 /*
333 * If it's a btree index, we can use its opfamily OIDs
334 * directly as the sort ordering opfamily OIDs.
335 */
336 Assert(amroutine->amcanorder);
337
338 info->sortopfamily = info->opfamily;
339 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
340 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
341
342 for (i = 0; i < nkeycolumns; i++)
343 {
344 int16 opt = indexRelation->rd_indoption[i];
345
346 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 }
349 }
350 else if (amroutine->amcanorder)
351 {
352 /*
353 * Otherwise, identify the corresponding btree opfamilies
354 * by trying to map this index's "<" operators into btree.
355 * Since "<" uniquely defines the behavior of a sort
356 * order, this is a sufficient test.
357 *
358 * XXX This method is rather slow and complicated. It'd
359 * be better to have a way to explicitly declare the
360 * corresponding btree opfamily for each opfamily of the
361 * other index type.
362 */
363 info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
364 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
365 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
366
367 for (i = 0; i < nkeycolumns; i++)
368 {
369 int16 opt = indexRelation->rd_indoption[i];
370 Oid ltopr;
371 Oid opfamily;
372 Oid opcintype;
373 CompareType cmptype;
374
375 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377
378 ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 info->opcintype[i],
380 info->opcintype[i],
381 COMPARE_LT);
382 if (OidIsValid(ltopr) &&
384 &opfamily,
385 &opcintype,
386 &cmptype) &&
387 opcintype == info->opcintype[i] &&
388 cmptype == COMPARE_LT)
389 {
390 /* Successful mapping */
391 info->sortopfamily[i] = opfamily;
392 }
393 else
394 {
395 /* Fail ... quietly treat index as unordered */
396 info->sortopfamily = NULL;
397 info->reverse_sort = NULL;
398 info->nulls_first = NULL;
399 break;
400 }
401 }
402 }
403 else
404 {
405 info->sortopfamily = NULL;
406 info->reverse_sort = NULL;
407 info->nulls_first = NULL;
408 }
409 }
410 else
411 {
412 info->amcanorderbyop = false;
413 info->amoptionalkey = false;
414 info->amsearcharray = false;
415 info->amsearchnulls = false;
416 info->amcanparallel = false;
417 info->amhasgettuple = false;
418 info->amhasgetbitmap = false;
419 info->amcanmarkpos = false;
420 info->amcostestimate = NULL;
421
422 info->sortopfamily = NULL;
423 info->reverse_sort = NULL;
424 info->nulls_first = NULL;
425 }
426
427 /*
428 * Fetch the index expressions and predicate, if any. We must
429 * modify the copies we obtain from the relcache to have the
430 * correct varno for the parent relation, so that they match up
431 * correctly against qual clauses.
432 */
433 info->indexprs = RelationGetIndexExpressions(indexRelation);
434 info->indpred = RelationGetIndexPredicate(indexRelation);
435 if (info->indexprs && varno != 1)
436 ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
437 if (info->indpred && varno != 1)
438 ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
439
440 /* Build targetlist using the completed indexprs data */
441 info->indextlist = build_index_tlist(root, info, relation);
442
443 info->indrestrictinfo = NIL; /* set later, in indxpath.c */
444 info->predOK = false; /* set later, in indxpath.c */
445 info->unique = index->indisunique;
446 info->nullsnotdistinct = index->indnullsnotdistinct;
447 info->immediate = index->indimmediate;
448 info->hypothetical = false;
449
450 /*
451 * Estimate the index size. If it's not a partial index, we lock
452 * the number-of-tuples estimate to equal the parent table; if it
453 * is partial then we have to use the same methods as we would for
454 * a table, except we can be sure that the index is not larger
455 * than the table. We must ignore partitioned indexes here as
456 * there are not physical indexes.
457 */
458 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
459 {
460 if (info->indpred == NIL)
461 {
462 info->pages = RelationGetNumberOfBlocks(indexRelation);
463 info->tuples = rel->tuples;
464 }
465 else
466 {
467 double allvisfrac; /* dummy */
468
469 estimate_rel_size(indexRelation, NULL,
470 &info->pages, &info->tuples, &allvisfrac);
471 if (info->tuples > rel->tuples)
472 info->tuples = rel->tuples;
473 }
474
475 /*
476 * Get tree height while we have the index open
477 */
478 if (amroutine->amgettreeheight)
479 {
480 info->tree_height = amroutine->amgettreeheight(indexRelation);
481 }
482 else
483 {
484 /* For other index types, just set it to "unknown" for now */
485 info->tree_height = -1;
486 }
487 }
488 else
489 {
490 /* Zero these out for partitioned indexes */
491 info->pages = 0;
492 info->tuples = 0.0;
493 info->tree_height = -1;
494 }
495
496 index_close(indexRelation, NoLock);
497
498 /*
499 * We've historically used lcons() here. It'd make more sense to
500 * use lappend(), but that causes the planner to change behavior
501 * in cases where two indexes seem equally attractive. For now,
502 * stick with lcons() --- few tables should have so many indexes
503 * that the O(N^2) behavior of lcons() is really a problem.
504 */
505 indexinfos = lcons(info, indexinfos);
506 }
507
508 list_free(indexoidlist);
509 }
510
511 rel->indexlist = indexinfos;
512
513 rel->statlist = get_relation_statistics(root, rel, relation);
514
515 /* Grab foreign-table info using the relcache, while we have it */
516 if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
517 {
518 /* Check if the access to foreign tables is restricted */
520 {
521 /* there must not be built-in foreign tables */
523
525 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
526 errmsg("access to non-system foreign table is restricted")));
527 }
528
530 rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
531 }
532 else
533 {
534 rel->serverid = InvalidOid;
535 rel->fdwroutine = NULL;
536 }
537
538 /* Collect info about relation's foreign keys, if relevant */
539 get_relation_foreign_keys(root, rel, relation, inhparent);
540
541 /* Collect info about functions implemented by the rel's table AM. */
542 if (relation->rd_tableam &&
543 relation->rd_tableam->scan_set_tidrange != NULL &&
544 relation->rd_tableam->scan_getnextslot_tidrange != NULL)
546
547 /*
548 * Collect info about relation's partitioning scheme, if any. Only
549 * inheritance parents may be partitioned.
550 */
551 if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
552 set_relation_partition_info(root, rel, relation);
553
554 table_close(relation, NoLock);
555
556 /*
557 * Allow a plugin to editorialize on the info we obtained from the
558 * catalogs. Actions might include altering the assumed relation size,
559 * removing an index, or adding a hypothetical index to the indexlist.
560 */
562 (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
563}
564
565/*
566 * get_relation_foreign_keys -
567 * Retrieves foreign key information for a given relation.
568 *
569 * ForeignKeyOptInfos for relevant foreign keys are created and added to
570 * root->fkey_list. We do this now while we have the relcache entry open.
571 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
572 * until all RelOptInfos have been built, but the cost of re-opening the
573 * relcache entries would probably exceed any savings.
574 */
575static void
577 Relation relation, bool inhparent)
578{
579 List *rtable = root->parse->rtable;
580 List *cachedfkeys;
581 ListCell *lc;
582
583 /*
584 * If it's not a baserel, we don't care about its FKs. Also, if the query
585 * references only a single relation, we can skip the lookup since no FKs
586 * could satisfy the requirements below.
587 */
588 if (rel->reloptkind != RELOPT_BASEREL ||
589 list_length(rtable) < 2)
590 return;
591
592 /*
593 * If it's the parent of an inheritance tree, ignore its FKs. We could
594 * make useful FK-based deductions if we found that all members of the
595 * inheritance tree have equivalent FK constraints, but detecting that
596 * would require code that hasn't been written.
597 */
598 if (inhparent)
599 return;
600
601 /*
602 * Extract data about relation's FKs from the relcache. Note that this
603 * list belongs to the relcache and might disappear in a cache flush, so
604 * we must not do any further catalog access within this function.
605 */
606 cachedfkeys = RelationGetFKeyList(relation);
607
608 /*
609 * Figure out which FKs are of interest for this query, and create
610 * ForeignKeyOptInfos for them. We want only FKs that reference some
611 * other RTE of the current query. In queries containing self-joins,
612 * there might be more than one other RTE for a referenced table, and we
613 * should make a ForeignKeyOptInfo for each occurrence.
614 *
615 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
616 * too hard to identify those here, so we might end up making some useless
617 * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
618 * them again.
619 */
620 foreach(lc, cachedfkeys)
621 {
623 Index rti;
624 ListCell *lc2;
625
626 /* conrelid should always be that of the table we're considering */
627 Assert(cachedfk->conrelid == RelationGetRelid(relation));
628
629 /* skip constraints currently not enforced */
630 if (!cachedfk->conenforced)
631 continue;
632
633 /* Scan to find other RTEs matching confrelid */
634 rti = 0;
635 foreach(lc2, rtable)
636 {
637 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
638 ForeignKeyOptInfo *info;
639
640 rti++;
641 /* Ignore if not the correct table */
642 if (rte->rtekind != RTE_RELATION ||
643 rte->relid != cachedfk->confrelid)
644 continue;
645 /* Ignore if it's an inheritance parent; doesn't really match */
646 if (rte->inh)
647 continue;
648 /* Ignore self-referential FKs; we only care about joins */
649 if (rti == rel->relid)
650 continue;
651
652 /* OK, let's make an entry */
654 info->con_relid = rel->relid;
655 info->ref_relid = rti;
656 info->nkeys = cachedfk->nkeys;
657 memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
658 memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
659 memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
660 /* zero out fields to be filled by match_foreign_keys_to_quals */
661 info->nmatched_ec = 0;
662 info->nconst_ec = 0;
663 info->nmatched_rcols = 0;
664 info->nmatched_ri = 0;
665 memset(info->eclass, 0, sizeof(info->eclass));
666 memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
667 memset(info->rinfos, 0, sizeof(info->rinfos));
668
669 root->fkey_list = lappend(root->fkey_list, info);
670 }
671 }
672}
673
674/*
675 * get_relation_notnullatts -
676 * Retrieves column not-null constraint information for a given relation.
677 *
678 * We do this while we have the relcache entry open, and store the column
679 * not-null constraint information in a hash table based on the relation OID.
680 */
681void
683{
684 Oid relid = RelationGetRelid(relation);
685 NotnullHashEntry *hentry;
686 bool found;
687 Bitmapset *notnullattnums = NULL;
688
689 /* bail out if the relation has no not-null constraints */
690 if (relation->rd_att->constr == NULL ||
691 !relation->rd_att->constr->has_not_null)
692 return;
693
694 /* create the hash table if it hasn't been created yet */
695 if (root->glob->rel_notnullatts_hash == NULL)
696 {
697 HTAB *hashtab;
698 HASHCTL hash_ctl;
699
700 hash_ctl.keysize = sizeof(Oid);
701 hash_ctl.entrysize = sizeof(NotnullHashEntry);
702 hash_ctl.hcxt = CurrentMemoryContext;
703
704 hashtab = hash_create("Relation NOT NULL attnums",
705 64L, /* arbitrary initial size */
706 &hash_ctl,
708
709 root->glob->rel_notnullatts_hash = hashtab;
710 }
711
712 /*
713 * Create a hash entry for this relation OID, if we don't have one
714 * already.
715 */
716 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
717 &relid,
719 &found);
720
721 /* bail out if a hash entry already exists for this relation OID */
722 if (found)
723 return;
724
725 /* collect the column not-null constraint information for this relation */
726 for (int i = 0; i < relation->rd_att->natts; i++)
727 {
728 CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
729
731
733 {
734 notnullattnums = bms_add_member(notnullattnums, i + 1);
735
736 /*
737 * Per RemoveAttributeById(), dropped columns will have their
738 * attnotnull unset, so we needn't check for dropped columns in
739 * the above condition.
740 */
741 Assert(!attr->attisdropped);
742 }
743 }
744
745 /* ... and initialize the new hash entry */
746 hentry->notnullattnums = notnullattnums;
747}
748
749/*
750 * find_relation_notnullatts -
751 * Searches the hash table and returns the column not-null constraint
752 * information for a given relation.
753 */
754Bitmapset *
756{
757 NotnullHashEntry *hentry;
758 bool found;
759
760 if (root->glob->rel_notnullatts_hash == NULL)
761 return NULL;
762
763 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
764 &relid,
765 HASH_FIND,
766 &found);
767 if (!found)
768 return NULL;
769
770 return hentry->notnullattnums;
771}
772
773/*
774 * infer_arbiter_indexes -
775 * Determine the unique indexes used to arbitrate speculative insertion.
776 *
777 * Uses user-supplied inference clause expressions and predicate to match a
778 * unique index from those defined and ready on the heap relation (target).
779 * An exact match is required on columns/expressions (although they can appear
780 * in any order). However, the predicate given by the user need only restrict
781 * insertion to a subset of some part of the table covered by some particular
782 * unique index (in particular, a partial unique index) in order to be
783 * inferred.
784 *
785 * The implementation does not consider which B-Tree operator class any
786 * particular available unique index attribute uses, unless one was specified
787 * in the inference specification. The same is true of collations. In
788 * particular, there is no system dependency on the default operator class for
789 * the purposes of inference. If no opclass (or collation) is specified, then
790 * all matching indexes (that may or may not match the default in terms of
791 * each attribute opclass/collation) are used for inference.
792 */
793List *
795{
796 OnConflictExpr *onconflict = root->parse->onConflict;
797
798 /* Iteration state */
799 Index varno;
800 RangeTblEntry *rte;
801 Relation relation;
802 Oid indexOidFromConstraint = InvalidOid;
803 List *indexList;
804 List *indexRelList = NIL;
805
806 /*
807 * Required attributes and expressions used to match indexes to the clause
808 * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
809 * these from that constraint's index to match all other indexes, to
810 * account for the case where that index is being concurrently reindexed.
811 */
812 List *inferIndexExprs = (List *) onconflict->arbiterWhere;
813 Bitmapset *inferAttrs = NULL;
814 List *inferElems = NIL;
815
816 /* Results */
817 List *results = NIL;
818 bool foundValid = false;
819
820 /*
821 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
822 * specification or named constraint. ON CONFLICT DO UPDATE statements
823 * must always provide one or the other (but parser ought to have caught
824 * that already).
825 */
826 if (onconflict->arbiterElems == NIL &&
827 onconflict->constraint == InvalidOid)
828 return NIL;
829
830 /*
831 * We need not lock the relation since it was already locked, either by
832 * the rewriter or when expand_inherited_rtentry() added it to the query's
833 * rangetable.
834 */
835 varno = root->parse->resultRelation;
836 rte = rt_fetch(varno, root->parse->rtable);
837
838 relation = table_open(rte->relid, NoLock);
839
840 /*
841 * Build normalized/BMS representation of plain indexed attributes, as
842 * well as a separate list of expression items. This simplifies matching
843 * the cataloged definition of indexes.
844 */
845 foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
846 {
847 Var *var;
848 int attno;
849
850 /* we cannot also have a constraint name, per grammar */
851 Assert(!OidIsValid(onconflict->constraint));
852
853 if (!IsA(elem->expr, Var))
854 {
855 /* If not a plain Var, just shove it in inferElems for now */
856 inferElems = lappend(inferElems, elem->expr);
857 continue;
858 }
859
860 var = (Var *) elem->expr;
861 attno = var->varattno;
862
863 if (attno == 0)
865 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
866 errmsg("whole row unique index inference specifications are not supported")));
867
868 inferAttrs = bms_add_member(inferAttrs,
870 }
871
872 /*
873 * Next, open all the indexes. We need this list for two things: first,
874 * if an ON CONSTRAINT clause was given, and that constraint's index is
875 * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
876 * for that index. Second, if an attribute list was specified in the ON
877 * CONFLICT clause, we use the list to find the indexes whose attributes
878 * match that list.
879 */
880 indexList = RelationGetIndexList(relation);
881 foreach_oid(indexoid, indexList)
882 {
883 Relation idxRel;
884
885 /* obtain the same lock type that the executor will ultimately use */
886 idxRel = index_open(indexoid, rte->rellockmode);
887 indexRelList = lappend(indexRelList, idxRel);
888 }
889
890 /*
891 * If a constraint was named in the command, look up its index. We don't
892 * return it immediately because we need some additional sanity checks,
893 * and also because we need to include other indexes as arbiters to
894 * account for REINDEX CONCURRENTLY processing it.
895 */
896 if (onconflict->constraint != InvalidOid)
897 {
898 /* we cannot also have an explicit list of elements, per grammar */
899 Assert(onconflict->arbiterElems == NIL);
900
901 indexOidFromConstraint = get_constraint_index(onconflict->constraint);
902 if (indexOidFromConstraint == InvalidOid)
904 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
905 errmsg("constraint in ON CONFLICT clause has no associated index")));
906
907 /*
908 * Find the named constraint index to extract its attributes and
909 * predicates.
910 */
911 foreach_ptr(RelationData, idxRel, indexRelList)
912 {
913 Form_pg_index idxForm = idxRel->rd_index;
914
915 if (indexOidFromConstraint == idxForm->indexrelid)
916 {
917 /* Found it. */
918 Assert(idxForm->indisready);
919
920 /*
921 * Set up inferElems and inferPredExprs to match the
922 * constraint index, so that we can match them in the loop
923 * below.
924 */
925 for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
926 {
927 int attno;
928
929 attno = idxRel->rd_index->indkey.values[natt];
930 if (attno != InvalidAttrNumber)
931 inferAttrs =
932 bms_add_member(inferAttrs,
934 }
935
936 inferElems = RelationGetIndexExpressions(idxRel);
937 inferIndexExprs = RelationGetIndexPredicate(idxRel);
938 break;
939 }
940 }
941 }
942
943 /*
944 * Using that representation, iterate through the list of indexes on the
945 * target relation to find matches.
946 */
947 foreach_ptr(RelationData, idxRel, indexRelList)
948 {
949 Form_pg_index idxForm;
950 Bitmapset *indexedAttrs;
951 List *idxExprs;
952 List *predExprs;
953 AttrNumber natt;
954 bool match;
955
956 /*
957 * Extract info from the relation descriptor for the index.
958 *
959 * Let executor complain about !indimmediate case directly, because
960 * enforcement needs to occur there anyway when an inference clause is
961 * omitted.
962 */
963 idxForm = idxRel->rd_index;
964
965 /*
966 * Ignore indexes that aren't indisready, because we cannot trust
967 * their catalog structure yet. However, if any indexes are marked
968 * indisready but not yet indisvalid, we still consider them, because
969 * they might turn valid while we're running. Doing it this way
970 * allows a concurrent transaction with a slightly later catalog
971 * snapshot infer the same set of indexes, which is critical to
972 * prevent spurious 'duplicate key' errors.
973 *
974 * However, another critical aspect is that a unique index that isn't
975 * yet marked indisvalid=true might not be complete yet, meaning it
976 * wouldn't detect possible duplicate rows. In order to prevent false
977 * negatives, we require that we include in the set of inferred
978 * indexes at least one index that is marked valid.
979 */
980 if (!idxForm->indisready)
981 continue;
982
983 /*
984 * Note that we do not perform a check against indcheckxmin (like e.g.
985 * get_relation_info()) here to eliminate candidates, because
986 * uniqueness checking only cares about the most recently committed
987 * tuple versions.
988 */
989
990 /*
991 * Look for match for "ON constraint_name" variant, which may not be a
992 * unique constraint. This can only be a constraint name.
993 */
994 if (indexOidFromConstraint == idxForm->indexrelid)
995 {
996 if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
998 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
999 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1000
1001 /* Consider this one a match already */
1002 results = lappend_oid(results, idxForm->indexrelid);
1003 foundValid |= idxForm->indisvalid;
1004 continue;
1005 }
1006 else if (indexOidFromConstraint != InvalidOid)
1007 {
1008 /*
1009 * In the case of "ON constraint_name DO UPDATE" we need to skip
1010 * non-unique candidates.
1011 */
1012 if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1013 continue;
1014 }
1015 else
1016 {
1017 /*
1018 * Only considering conventional inference at this point (not
1019 * named constraints), so index under consideration can be
1020 * immediately skipped if it's not unique.
1021 */
1022 if (!idxForm->indisunique)
1023 continue;
1024 }
1025
1026 /*
1027 * So-called unique constraints with WITHOUT OVERLAPS are really
1028 * exclusion constraints, so skip those too.
1029 */
1030 if (idxForm->indisexclusion)
1031 continue;
1032
1033 /* Build BMS representation of plain (non expression) index attrs */
1034 indexedAttrs = NULL;
1035 for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1036 {
1037 int attno = idxRel->rd_index->indkey.values[natt];
1038
1039 if (attno != 0)
1040 indexedAttrs = bms_add_member(indexedAttrs,
1042 }
1043
1044 /* Non-expression attributes (if any) must match */
1045 if (!bms_equal(indexedAttrs, inferAttrs))
1046 continue;
1047
1048 /* Expression attributes (if any) must match */
1049 idxExprs = RelationGetIndexExpressions(idxRel);
1050 if (idxExprs && varno != 1)
1051 ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1052
1053 /*
1054 * If arbiterElems are present, check them. (Note that if a
1055 * constraint name was given in the command line, this list is NIL.)
1056 */
1057 match = true;
1058 foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
1059 {
1060 /*
1061 * Ensure that collation/opclass aspects of inference expression
1062 * element match. Even though this loop is primarily concerned
1063 * with matching expressions, it is a convenient point to check
1064 * this for both expressions and ordinary (non-expression)
1065 * attributes appearing as inference elements.
1066 */
1067 if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
1068 {
1069 match = false;
1070 break;
1071 }
1072
1073 /*
1074 * Plain Vars don't factor into count of expression elements, and
1075 * the question of whether or not they satisfy the index
1076 * definition has already been considered (they must).
1077 */
1078 if (IsA(elem->expr, Var))
1079 continue;
1080
1081 /*
1082 * Might as well avoid redundant check in the rare cases where
1083 * infer_collation_opclass_match() is required to do real work.
1084 * Otherwise, check that element expression appears in cataloged
1085 * index definition.
1086 */
1087 if (elem->infercollid != InvalidOid ||
1088 elem->inferopclass != InvalidOid ||
1089 list_member(idxExprs, elem->expr))
1090 continue;
1091
1092 match = false;
1093 break;
1094 }
1095 if (!match)
1096 continue;
1097
1098 /*
1099 * In case of inference from an attribute list, ensure that the
1100 * expression elements from inference clause are not missing any
1101 * cataloged expressions. This does the right thing when unique
1102 * indexes redundantly repeat the same attribute, or if attributes
1103 * redundantly appear multiple times within an inference clause.
1104 *
1105 * In case a constraint was named, ensure the candidate has an equal
1106 * set of expressions as the named constraint's index.
1107 */
1108 if (list_difference(idxExprs, inferElems) != NIL)
1109 continue;
1110
1111 predExprs = RelationGetIndexPredicate(idxRel);
1112 if (predExprs && varno != 1)
1113 ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1114
1115 /*
1116 * Partial indexes affect each form of ON CONFLICT differently: if a
1117 * constraint was named, then the predicates must be identical. In
1118 * conventional inference, the index's predicate must be implied by
1119 * the WHERE clause.
1120 */
1121 if (OidIsValid(indexOidFromConstraint))
1122 {
1123 if (list_difference(predExprs, inferIndexExprs) != NIL)
1124 continue;
1125 }
1126 else
1127 {
1128 if (!predicate_implied_by(predExprs, inferIndexExprs, false))
1129 continue;
1130 }
1131
1132 /* All good -- consider this index a match */
1133 results = lappend_oid(results, idxForm->indexrelid);
1134 foundValid |= idxForm->indisvalid;
1135 }
1136
1137 /* Close all indexes */
1138 foreach_ptr(RelationData, idxRel, indexRelList)
1139 {
1140 index_close(idxRel, NoLock);
1141 }
1142
1143 list_free(indexList);
1144 list_free(indexRelList);
1145 table_close(relation, NoLock);
1146
1147 /* We require at least one indisvalid index */
1148 if (results == NIL || !foundValid)
1149 ereport(ERROR,
1150 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1151 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1152
1153 return results;
1154}
1155
1156/*
1157 * infer_collation_opclass_match - ensure infer element opclass/collation match
1158 *
1159 * Given unique index inference element from inference specification, if
1160 * collation was specified, or if opclass was specified, verify that there is
1161 * at least one matching indexed attribute (occasionally, there may be more).
1162 * Skip this in the common case where inference specification does not include
1163 * collation or opclass (instead matching everything, regardless of cataloged
1164 * collation/opclass of indexed attribute).
1165 *
1166 * At least historically, Postgres has not offered collations or opclasses
1167 * with alternative-to-default notions of equality, so these additional
1168 * criteria should only be required infrequently.
1169 *
1170 * Don't give up immediately when an inference element matches some attribute
1171 * cataloged as indexed but not matching additional opclass/collation
1172 * criteria. This is done so that the implementation is as forgiving as
1173 * possible of redundancy within cataloged index attributes (or, less
1174 * usefully, within inference specification elements). If collations actually
1175 * differ between apparently redundantly indexed attributes (redundant within
1176 * or across indexes), then there really is no redundancy as such.
1177 *
1178 * Note that if an inference element specifies an opclass and a collation at
1179 * once, both must match in at least one particular attribute within index
1180 * catalog definition in order for that inference element to be considered
1181 * inferred/satisfied.
1182 */
1183static bool
1185 List *idxExprs)
1186{
1187 AttrNumber natt;
1188 Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1189 Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1190 int nplain = 0; /* # plain attrs observed */
1191
1192 /*
1193 * If inference specification element lacks collation/opclass, then no
1194 * need to check for exact match.
1195 */
1196 if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1197 return true;
1198
1199 /*
1200 * Lookup opfamily and input type, for matching indexes
1201 */
1202 if (elem->inferopclass)
1203 {
1204 inferopfamily = get_opclass_family(elem->inferopclass);
1205 inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1206 }
1207
1208 for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1209 {
1210 Oid opfamily = idxRel->rd_opfamily[natt - 1];
1211 Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1212 Oid collation = idxRel->rd_indcollation[natt - 1];
1213 int attno = idxRel->rd_index->indkey.values[natt - 1];
1214
1215 if (attno != 0)
1216 nplain++;
1217
1218 if (elem->inferopclass != InvalidOid &&
1219 (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1220 {
1221 /* Attribute needed to match opclass, but didn't */
1222 continue;
1223 }
1224
1225 if (elem->infercollid != InvalidOid &&
1226 elem->infercollid != collation)
1227 {
1228 /* Attribute needed to match collation, but didn't */
1229 continue;
1230 }
1231
1232 /* If one matching index att found, good enough -- return true */
1233 if (IsA(elem->expr, Var))
1234 {
1235 if (((Var *) elem->expr)->varattno == attno)
1236 return true;
1237 }
1238 else if (attno == 0)
1239 {
1240 Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1241
1242 /*
1243 * Note that unlike routines like match_index_to_operand() we
1244 * don't need to care about RelabelType. Neither the index
1245 * definition nor the inference clause should contain them.
1246 */
1247 if (equal(elem->expr, nattExpr))
1248 return true;
1249 }
1250 }
1251
1252 return false;
1253}
1254
1255/*
1256 * estimate_rel_size - estimate # pages and # tuples in a table or index
1257 *
1258 * We also estimate the fraction of the pages that are marked all-visible in
1259 * the visibility map, for use in estimation of index-only scans.
1260 *
1261 * If attr_widths isn't NULL, it points to the zero-index entry of the
1262 * relation's attr_widths[] cache; we fill this in if we have need to compute
1263 * the attribute widths for estimation purposes.
1264 */
1265void
1267 BlockNumber *pages, double *tuples, double *allvisfrac)
1268{
1269 BlockNumber curpages;
1270 BlockNumber relpages;
1271 double reltuples;
1272 BlockNumber relallvisible;
1273 double density;
1274
1275 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1276 {
1277 table_relation_estimate_size(rel, attr_widths, pages, tuples,
1278 allvisfrac);
1279 }
1280 else if (rel->rd_rel->relkind == RELKIND_INDEX)
1281 {
1282 /*
1283 * XXX: It'd probably be good to move this into a callback, individual
1284 * index types e.g. know if they have a metapage.
1285 */
1286
1287 /* it has storage, ok to call the smgr */
1288 curpages = RelationGetNumberOfBlocks(rel);
1289
1290 /* report estimated # pages */
1291 *pages = curpages;
1292 /* quick exit if rel is clearly empty */
1293 if (curpages == 0)
1294 {
1295 *tuples = 0;
1296 *allvisfrac = 0;
1297 return;
1298 }
1299
1300 /* coerce values in pg_class to more desirable types */
1301 relpages = (BlockNumber) rel->rd_rel->relpages;
1302 reltuples = (double) rel->rd_rel->reltuples;
1303 relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1304
1305 /*
1306 * Discount the metapage while estimating the number of tuples. This
1307 * is a kluge because it assumes more than it ought to about index
1308 * structure. Currently it's OK for btree, hash, and GIN indexes but
1309 * suspect for GiST indexes.
1310 */
1311 if (relpages > 0)
1312 {
1313 curpages--;
1314 relpages--;
1315 }
1316
1317 /* estimate number of tuples from previous tuple density */
1318 if (reltuples >= 0 && relpages > 0)
1319 density = reltuples / (double) relpages;
1320 else
1321 {
1322 /*
1323 * If we have no data because the relation was never vacuumed,
1324 * estimate tuple width from attribute datatypes. We assume here
1325 * that the pages are completely full, which is OK for tables
1326 * (since they've presumably not been VACUUMed yet) but is
1327 * probably an overestimate for indexes. Fortunately
1328 * get_relation_info() can clamp the overestimate to the parent
1329 * table's size.
1330 *
1331 * Note: this code intentionally disregards alignment
1332 * considerations, because (a) that would be gilding the lily
1333 * considering how crude the estimate is, and (b) it creates
1334 * platform dependencies in the default plans which are kind of a
1335 * headache for regression testing.
1336 *
1337 * XXX: Should this logic be more index specific?
1338 */
1339 int32 tuple_width;
1340
1341 tuple_width = get_rel_data_width(rel, attr_widths);
1342 tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1343 tuple_width += sizeof(ItemIdData);
1344 /* note: integer division is intentional here */
1345 density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1346 }
1347 *tuples = rint(density * (double) curpages);
1348
1349 /*
1350 * We use relallvisible as-is, rather than scaling it up like we do
1351 * for the pages and tuples counts, on the theory that any pages added
1352 * since the last VACUUM are most likely not marked all-visible. But
1353 * costsize.c wants it converted to a fraction.
1354 */
1355 if (relallvisible == 0 || curpages <= 0)
1356 *allvisfrac = 0;
1357 else if ((double) relallvisible >= curpages)
1358 *allvisfrac = 1;
1359 else
1360 *allvisfrac = (double) relallvisible / curpages;
1361 }
1362 else
1363 {
1364 /*
1365 * Just use whatever's in pg_class. This covers foreign tables,
1366 * sequences, and also relkinds without storage (shouldn't get here?);
1367 * see initializations in AddNewRelationTuple(). Note that FDW must
1368 * cope if reltuples is -1!
1369 */
1370 *pages = rel->rd_rel->relpages;
1371 *tuples = rel->rd_rel->reltuples;
1372 *allvisfrac = 0;
1373 }
1374}
1375
1376
1377/*
1378 * get_rel_data_width
1379 *
1380 * Estimate the average width of (the data part of) the relation's tuples.
1381 *
1382 * If attr_widths isn't NULL, it points to the zero-index entry of the
1383 * relation's attr_widths[] cache; use and update that cache as appropriate.
1384 *
1385 * Currently we ignore dropped columns. Ideally those should be included
1386 * in the result, but we haven't got any way to get info about them; and
1387 * since they might be mostly NULLs, treating them as zero-width is not
1388 * necessarily the wrong thing anyway.
1389 */
1390int32
1392{
1393 int64 tuple_width = 0;
1394 int i;
1395
1396 for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1397 {
1398 Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1399 int32 item_width;
1400
1401 if (att->attisdropped)
1402 continue;
1403
1404 /* use previously cached data, if any */
1405 if (attr_widths != NULL && attr_widths[i] > 0)
1406 {
1407 tuple_width += attr_widths[i];
1408 continue;
1409 }
1410
1411 /* This should match set_rel_width() in costsize.c */
1412 item_width = get_attavgwidth(RelationGetRelid(rel), i);
1413 if (item_width <= 0)
1414 {
1415 item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1416 Assert(item_width > 0);
1417 }
1418 if (attr_widths != NULL)
1419 attr_widths[i] = item_width;
1420 tuple_width += item_width;
1421 }
1422
1423 return clamp_width_est(tuple_width);
1424}
1425
1426/*
1427 * get_relation_data_width
1428 *
1429 * External API for get_rel_data_width: same behavior except we have to
1430 * open the relcache entry.
1431 */
1432int32
1434{
1435 int32 result;
1436 Relation relation;
1437
1438 /* As above, assume relation is already locked */
1439 relation = table_open(relid, NoLock);
1440
1441 result = get_rel_data_width(relation, attr_widths);
1442
1443 table_close(relation, NoLock);
1444
1445 return result;
1446}
1447
1448
1449/*
1450 * get_relation_constraints
1451 *
1452 * Retrieve the applicable constraint expressions of the given relation.
1453 * Only constraints that have been validated are considered.
1454 *
1455 * Returns a List (possibly empty) of constraint expressions. Each one
1456 * has been canonicalized, and its Vars are changed to have the varno
1457 * indicated by rel->relid. This allows the expressions to be easily
1458 * compared to expressions taken from WHERE.
1459 *
1460 * If include_noinherit is true, it's okay to include constraints that
1461 * are marked NO INHERIT.
1462 *
1463 * If include_notnull is true, "col IS NOT NULL" expressions are generated
1464 * and added to the result for each column that's marked attnotnull.
1465 *
1466 * If include_partition is true, and the relation is a partition,
1467 * also include the partitioning constraints.
1468 *
1469 * Note: at present this is invoked at most once per relation per planner
1470 * run, and in many cases it won't be invoked at all, so there seems no
1471 * point in caching the data in RelOptInfo.
1472 */
1473static List *
1475 Oid relationObjectId, RelOptInfo *rel,
1476 bool include_noinherit,
1477 bool include_notnull,
1478 bool include_partition)
1479{
1480 List *result = NIL;
1481 Index varno = rel->relid;
1482 Relation relation;
1483 TupleConstr *constr;
1484
1485 /*
1486 * We assume the relation has already been safely locked.
1487 */
1488 relation = table_open(relationObjectId, NoLock);
1489
1490 constr = relation->rd_att->constr;
1491 if (constr != NULL)
1492 {
1493 int num_check = constr->num_check;
1494 int i;
1495
1496 for (i = 0; i < num_check; i++)
1497 {
1498 Node *cexpr;
1499
1500 /*
1501 * If this constraint hasn't been fully validated yet, we must
1502 * ignore it here.
1503 */
1504 if (!constr->check[i].ccvalid)
1505 continue;
1506
1507 /*
1508 * NOT ENFORCED constraints are always marked as invalid, which
1509 * should have been ignored.
1510 */
1511 Assert(constr->check[i].ccenforced);
1512
1513 /*
1514 * Also ignore if NO INHERIT and we weren't told that that's safe.
1515 */
1516 if (constr->check[i].ccnoinherit && !include_noinherit)
1517 continue;
1518
1519 cexpr = stringToNode(constr->check[i].ccbin);
1520
1521 /*
1522 * Fix Vars to have the desired varno. This must be done before
1523 * const-simplification because eval_const_expressions reduces
1524 * NullTest for Vars based on varno.
1525 */
1526 if (varno != 1)
1527 ChangeVarNodes(cexpr, 1, varno, 0);
1528
1529 /*
1530 * Run each expression through const-simplification and
1531 * canonicalization. This is not just an optimization, but is
1532 * necessary, because we will be comparing it to
1533 * similarly-processed qual clauses, and may fail to detect valid
1534 * matches without this. This must match the processing done to
1535 * qual clauses in preprocess_expression()! (We can skip the
1536 * stuff involving subqueries, however, since we don't allow any
1537 * in check constraints.)
1538 */
1539 cexpr = eval_const_expressions(root, cexpr);
1540
1541 cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1542
1543 /*
1544 * Finally, convert to implicit-AND format (that is, a List) and
1545 * append the resulting item(s) to our output list.
1546 */
1547 result = list_concat(result,
1548 make_ands_implicit((Expr *) cexpr));
1549 }
1550
1551 /* Add NOT NULL constraints in expression form, if requested */
1552 if (include_notnull && constr->has_not_null)
1553 {
1554 int natts = relation->rd_att->natts;
1555
1556 for (i = 1; i <= natts; i++)
1557 {
1558 CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1559
1560 if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1561 {
1562 Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1563 NullTest *ntest = makeNode(NullTest);
1564
1565 ntest->arg = (Expr *) makeVar(varno,
1566 i,
1567 wholeatt->atttypid,
1568 wholeatt->atttypmod,
1569 wholeatt->attcollation,
1570 0);
1571 ntest->nulltesttype = IS_NOT_NULL;
1572
1573 /*
1574 * argisrow=false is correct even for a composite column,
1575 * because attnotnull does not represent a SQL-spec IS NOT
1576 * NULL test in such a case, just IS DISTINCT FROM NULL.
1577 */
1578 ntest->argisrow = false;
1579 ntest->location = -1;
1580 result = lappend(result, ntest);
1581 }
1582 }
1583 }
1584 }
1585
1586 /*
1587 * Add partitioning constraints, if requested.
1588 */
1589 if (include_partition && relation->rd_rel->relispartition)
1590 {
1591 /* make sure rel->partition_qual is set */
1592 set_baserel_partition_constraint(relation, rel);
1593 result = list_concat(result, rel->partition_qual);
1594 }
1595
1596 /*
1597 * Expand virtual generated columns in the constraint expressions.
1598 */
1599 if (result)
1600 result = (List *) expand_generated_columns_in_expr((Node *) result,
1601 relation,
1602 varno);
1603
1604 table_close(relation, NoLock);
1605
1606 return result;
1607}
1608
1609/*
1610 * Try loading data for the statistics object.
1611 *
1612 * We don't know if the data (specified by statOid and inh value) exist.
1613 * The result is stored in stainfos list.
1614 */
1615static void
1617 Oid statOid, bool inh,
1618 Bitmapset *keys, List *exprs)
1619{
1621 HeapTuple dtup;
1622
1623 dtup = SearchSysCache2(STATEXTDATASTXOID,
1624 ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1625 if (!HeapTupleIsValid(dtup))
1626 return;
1627
1628 dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1629
1630 /* add one StatisticExtInfo for each kind built */
1631 if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1632 {
1634
1635 info->statOid = statOid;
1636 info->inherit = dataForm->stxdinherit;
1637 info->rel = rel;
1638 info->kind = STATS_EXT_NDISTINCT;
1639 info->keys = bms_copy(keys);
1640 info->exprs = exprs;
1641
1642 *stainfos = lappend(*stainfos, info);
1643 }
1644
1645 if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1646 {
1648
1649 info->statOid = statOid;
1650 info->inherit = dataForm->stxdinherit;
1651 info->rel = rel;
1652 info->kind = STATS_EXT_DEPENDENCIES;
1653 info->keys = bms_copy(keys);
1654 info->exprs = exprs;
1655
1656 *stainfos = lappend(*stainfos, info);
1657 }
1658
1659 if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1660 {
1662
1663 info->statOid = statOid;
1664 info->inherit = dataForm->stxdinherit;
1665 info->rel = rel;
1666 info->kind = STATS_EXT_MCV;
1667 info->keys = bms_copy(keys);
1668 info->exprs = exprs;
1669
1670 *stainfos = lappend(*stainfos, info);
1671 }
1672
1673 if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1674 {
1676
1677 info->statOid = statOid;
1678 info->inherit = dataForm->stxdinherit;
1679 info->rel = rel;
1680 info->kind = STATS_EXT_EXPRESSIONS;
1681 info->keys = bms_copy(keys);
1682 info->exprs = exprs;
1683
1684 *stainfos = lappend(*stainfos, info);
1685 }
1686
1687 ReleaseSysCache(dtup);
1688}
1689
1690/*
1691 * get_relation_statistics
1692 * Retrieve extended statistics defined on the table.
1693 *
1694 * Returns a List (possibly empty) of StatisticExtInfo objects describing
1695 * the statistics. Note that this doesn't load the actual statistics data,
1696 * just the identifying metadata. Only stats actually built are considered.
1697 */
1698static List *
1700 Relation relation)
1701{
1702 Index varno = rel->relid;
1703 List *statoidlist;
1704 List *stainfos = NIL;
1705 ListCell *l;
1706
1707 statoidlist = RelationGetStatExtList(relation);
1708
1709 foreach(l, statoidlist)
1710 {
1711 Oid statOid = lfirst_oid(l);
1712 Form_pg_statistic_ext staForm;
1713 HeapTuple htup;
1714 Bitmapset *keys = NULL;
1715 List *exprs = NIL;
1716 int i;
1717
1718 htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1719 if (!HeapTupleIsValid(htup))
1720 elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1721 staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1722
1723 /*
1724 * First, build the array of columns covered. This is ultimately
1725 * wasted if no stats within the object have actually been built, but
1726 * it doesn't seem worth troubling over that case.
1727 */
1728 for (i = 0; i < staForm->stxkeys.dim1; i++)
1729 keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1730
1731 /*
1732 * Preprocess expressions (if any). We read the expressions, fix the
1733 * varnos, and run them through eval_const_expressions.
1734 *
1735 * XXX We don't know yet if there are any data for this stats object,
1736 * with either stxdinherit value. But it's reasonable to assume there
1737 * is at least one of those, possibly both. So it's better to process
1738 * keys and expressions here.
1739 */
1740 {
1741 bool isnull;
1742 Datum datum;
1743
1744 /* decode expression (if any) */
1745 datum = SysCacheGetAttr(STATEXTOID, htup,
1746 Anum_pg_statistic_ext_stxexprs, &isnull);
1747
1748 if (!isnull)
1749 {
1750 char *exprsString;
1751
1752 exprsString = TextDatumGetCString(datum);
1753 exprs = (List *) stringToNode(exprsString);
1754 pfree(exprsString);
1755
1756 /*
1757 * Modify the copies we obtain from the relcache to have the
1758 * correct varno for the parent relation, so that they match
1759 * up correctly against qual clauses.
1760 *
1761 * This must be done before const-simplification because
1762 * eval_const_expressions reduces NullTest for Vars based on
1763 * varno.
1764 */
1765 if (varno != 1)
1766 ChangeVarNodes((Node *) exprs, 1, varno, 0);
1767
1768 /*
1769 * Run the expressions through eval_const_expressions. This is
1770 * not just an optimization, but is necessary, because the
1771 * planner will be comparing them to similarly-processed qual
1772 * clauses, and may fail to detect valid matches without this.
1773 * We must not use canonicalize_qual, however, since these
1774 * aren't qual expressions.
1775 */
1776 exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1777
1778 /* May as well fix opfuncids too */
1779 fix_opfuncids((Node *) exprs);
1780 }
1781 }
1782
1783 /* extract statistics for possible values of stxdinherit flag */
1784
1785 get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1786
1787 get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1788
1789 ReleaseSysCache(htup);
1790 bms_free(keys);
1791 }
1792
1793 list_free(statoidlist);
1794
1795 return stainfos;
1796}
1797
1798/*
1799 * relation_excluded_by_constraints
1800 *
1801 * Detect whether the relation need not be scanned because it has either
1802 * self-inconsistent restrictions, or restrictions inconsistent with the
1803 * relation's applicable constraints.
1804 *
1805 * Note: this examines only rel->relid, rel->reloptkind, and
1806 * rel->baserestrictinfo; therefore it can be called before filling in
1807 * other fields of the RelOptInfo.
1808 */
1809bool
1811 RelOptInfo *rel, RangeTblEntry *rte)
1812{
1813 bool include_noinherit;
1814 bool include_notnull;
1815 bool include_partition = false;
1816 List *safe_restrictions;
1817 List *constraint_pred;
1818 List *safe_constraints;
1819 ListCell *lc;
1820
1821 /* As of now, constraint exclusion works only with simple relations. */
1822 Assert(IS_SIMPLE_REL(rel));
1823
1824 /*
1825 * If there are no base restriction clauses, we have no hope of proving
1826 * anything below, so fall out quickly.
1827 */
1828 if (rel->baserestrictinfo == NIL)
1829 return false;
1830
1831 /*
1832 * Regardless of the setting of constraint_exclusion, detect
1833 * constant-FALSE-or-NULL restriction clauses. Although const-folding
1834 * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1835 * list can still have other members besides the FALSE constant, due to
1836 * qual pushdown and other mechanisms; so check them all. This doesn't
1837 * fire very often, but it seems cheap enough to be worth doing anyway.
1838 * (Without this, we'd miss some optimizations that 9.5 and earlier found
1839 * via much more roundabout methods.)
1840 */
1841 foreach(lc, rel->baserestrictinfo)
1842 {
1843 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1844 Expr *clause = rinfo->clause;
1845
1846 if (clause && IsA(clause, Const) &&
1847 (((Const *) clause)->constisnull ||
1848 !DatumGetBool(((Const *) clause)->constvalue)))
1849 return true;
1850 }
1851
1852 /*
1853 * Skip further tests, depending on constraint_exclusion.
1854 */
1855 switch (constraint_exclusion)
1856 {
1858 /* In 'off' mode, never make any further tests */
1859 return false;
1860
1862
1863 /*
1864 * When constraint_exclusion is set to 'partition' we only handle
1865 * appendrel members. Partition pruning has already been applied,
1866 * so there is no need to consider the rel's partition constraints
1867 * here.
1868 */
1870 break; /* appendrel member, so process it */
1871 return false;
1872
1874
1875 /*
1876 * In 'on' mode, always apply constraint exclusion. If we are
1877 * considering a baserel that is a partition (i.e., it was
1878 * directly named rather than expanded from a parent table), then
1879 * its partition constraints haven't been considered yet, so
1880 * include them in the processing here.
1881 */
1882 if (rel->reloptkind == RELOPT_BASEREL)
1883 include_partition = true;
1884 break; /* always try to exclude */
1885 }
1886
1887 /*
1888 * Check for self-contradictory restriction clauses. We dare not make
1889 * deductions with non-immutable functions, but any immutable clauses that
1890 * are self-contradictory allow us to conclude the scan is unnecessary.
1891 *
1892 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1893 * expecting to see any in its predicate argument.
1894 */
1895 safe_restrictions = NIL;
1896 foreach(lc, rel->baserestrictinfo)
1897 {
1898 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1899
1900 if (!contain_mutable_functions((Node *) rinfo->clause))
1901 safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1902 }
1903
1904 /*
1905 * We can use weak refutation here, since we're comparing restriction
1906 * clauses with restriction clauses.
1907 */
1908 if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1909 return true;
1910
1911 /*
1912 * Only plain relations have constraints, so stop here for other rtekinds.
1913 */
1914 if (rte->rtekind != RTE_RELATION)
1915 return false;
1916
1917 /*
1918 * If we are scanning just this table, we can use NO INHERIT constraints,
1919 * but not if we're scanning its children too. (Note that partitioned
1920 * tables should never have NO INHERIT constraints; but it's not necessary
1921 * for us to assume that here.)
1922 */
1923 include_noinherit = !rte->inh;
1924
1925 /*
1926 * Currently, attnotnull constraints must be treated as NO INHERIT unless
1927 * this is a partitioned table. In future we might track their
1928 * inheritance status more accurately, allowing this to be refined.
1929 *
1930 * XXX do we need/want to change this?
1931 */
1932 include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1933
1934 /*
1935 * Fetch the appropriate set of constraint expressions.
1936 */
1937 constraint_pred = get_relation_constraints(root, rte->relid, rel,
1938 include_noinherit,
1939 include_notnull,
1940 include_partition);
1941
1942 /*
1943 * We do not currently enforce that CHECK constraints contain only
1944 * immutable functions, so it's necessary to check here. We daren't draw
1945 * conclusions from plan-time evaluation of non-immutable functions. Since
1946 * they're ANDed, we can just ignore any mutable constraints in the list,
1947 * and reason about the rest.
1948 */
1949 safe_constraints = NIL;
1950 foreach(lc, constraint_pred)
1951 {
1952 Node *pred = (Node *) lfirst(lc);
1953
1954 if (!contain_mutable_functions(pred))
1955 safe_constraints = lappend(safe_constraints, pred);
1956 }
1957
1958 /*
1959 * The constraints are effectively ANDed together, so we can just try to
1960 * refute the entire collection at once. This may allow us to make proofs
1961 * that would fail if we took them individually.
1962 *
1963 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1964 * an obvious optimization. Some of the clauses might be OR clauses that
1965 * have volatile and nonvolatile subclauses, and it's OK to make
1966 * deductions with the nonvolatile parts.
1967 *
1968 * We need strong refutation because we have to prove that the constraints
1969 * would yield false, not just NULL.
1970 */
1971 if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1972 return true;
1973
1974 return false;
1975}
1976
1977
1978/*
1979 * build_physical_tlist
1980 *
1981 * Build a targetlist consisting of exactly the relation's user attributes,
1982 * in order. The executor can special-case such tlists to avoid a projection
1983 * step at runtime, so we use such tlists preferentially for scan nodes.
1984 *
1985 * Exception: if there are any dropped or missing columns, we punt and return
1986 * NIL. Ideally we would like to handle these cases too. However this
1987 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1988 * for a tlist that includes vars of no-longer-existent types. In theory we
1989 * could dig out the required info from the pg_attribute entries of the
1990 * relation, but that data is not readily available to ExecTypeFromTL.
1991 * For now, we don't apply the physical-tlist optimization when there are
1992 * dropped cols.
1993 *
1994 * We also support building a "physical" tlist for subqueries, functions,
1995 * values lists, table expressions, and CTEs, since the same optimization can
1996 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1997 * NamedTuplestoreScan, and WorkTableScan nodes.
1998 */
1999List *
2001{
2002 List *tlist = NIL;
2003 Index varno = rel->relid;
2004 RangeTblEntry *rte = planner_rt_fetch(varno, root);
2005 Relation relation;
2006 Query *subquery;
2007 Var *var;
2008 ListCell *l;
2009 int attrno,
2010 numattrs;
2011 List *colvars;
2012
2013 switch (rte->rtekind)
2014 {
2015 case RTE_RELATION:
2016 /* Assume we already have adequate lock */
2017 relation = table_open(rte->relid, NoLock);
2018
2019 numattrs = RelationGetNumberOfAttributes(relation);
2020 for (attrno = 1; attrno <= numattrs; attrno++)
2021 {
2022 Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
2023 attrno - 1);
2024
2025 if (att_tup->attisdropped || att_tup->atthasmissing)
2026 {
2027 /* found a dropped or missing col, so punt */
2028 tlist = NIL;
2029 break;
2030 }
2031
2032 var = makeVar(varno,
2033 attrno,
2034 att_tup->atttypid,
2035 att_tup->atttypmod,
2036 att_tup->attcollation,
2037 0);
2038
2039 tlist = lappend(tlist,
2040 makeTargetEntry((Expr *) var,
2041 attrno,
2042 NULL,
2043 false));
2044 }
2045
2046 table_close(relation, NoLock);
2047 break;
2048
2049 case RTE_SUBQUERY:
2050 subquery = rte->subquery;
2051 foreach(l, subquery->targetList)
2052 {
2053 TargetEntry *tle = (TargetEntry *) lfirst(l);
2054
2055 /*
2056 * A resjunk column of the subquery can be reflected as
2057 * resjunk in the physical tlist; we need not punt.
2058 */
2059 var = makeVarFromTargetEntry(varno, tle);
2060
2061 tlist = lappend(tlist,
2062 makeTargetEntry((Expr *) var,
2063 tle->resno,
2064 NULL,
2065 tle->resjunk));
2066 }
2067 break;
2068
2069 case RTE_FUNCTION:
2070 case RTE_TABLEFUNC:
2071 case RTE_VALUES:
2072 case RTE_CTE:
2074 case RTE_RESULT:
2075 /* Not all of these can have dropped cols, but share code anyway */
2076 expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2077 true /* include dropped */ , NULL, &colvars);
2078 foreach(l, colvars)
2079 {
2080 var = (Var *) lfirst(l);
2081
2082 /*
2083 * A non-Var in expandRTE's output means a dropped column;
2084 * must punt.
2085 */
2086 if (!IsA(var, Var))
2087 {
2088 tlist = NIL;
2089 break;
2090 }
2091
2092 tlist = lappend(tlist,
2093 makeTargetEntry((Expr *) var,
2094 var->varattno,
2095 NULL,
2096 false));
2097 }
2098 break;
2099
2100 default:
2101 /* caller error */
2102 elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2103 (int) rte->rtekind);
2104 break;
2105 }
2106
2107 return tlist;
2108}
2109
2110/*
2111 * build_index_tlist
2112 *
2113 * Build a targetlist representing the columns of the specified index.
2114 * Each column is represented by a Var for the corresponding base-relation
2115 * column, or an expression in base-relation Vars, as appropriate.
2116 *
2117 * There are never any dropped columns in indexes, so unlike
2118 * build_physical_tlist, we need no failure case.
2119 */
2120static List *
2122 Relation heapRelation)
2123{
2124 List *tlist = NIL;
2125 Index varno = index->rel->relid;
2126 ListCell *indexpr_item;
2127 int i;
2128
2129 indexpr_item = list_head(index->indexprs);
2130 for (i = 0; i < index->ncolumns; i++)
2131 {
2132 int indexkey = index->indexkeys[i];
2133 Expr *indexvar;
2134
2135 if (indexkey != 0)
2136 {
2137 /* simple column */
2138 const FormData_pg_attribute *att_tup;
2139
2140 if (indexkey < 0)
2141 att_tup = SystemAttributeDefinition(indexkey);
2142 else
2143 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2144
2145 indexvar = (Expr *) makeVar(varno,
2146 indexkey,
2147 att_tup->atttypid,
2148 att_tup->atttypmod,
2149 att_tup->attcollation,
2150 0);
2151 }
2152 else
2153 {
2154 /* expression column */
2155 if (indexpr_item == NULL)
2156 elog(ERROR, "wrong number of index expressions");
2157 indexvar = (Expr *) lfirst(indexpr_item);
2158 indexpr_item = lnext(index->indexprs, indexpr_item);
2159 }
2160
2161 tlist = lappend(tlist,
2162 makeTargetEntry(indexvar,
2163 i + 1,
2164 NULL,
2165 false));
2166 }
2167 if (indexpr_item != NULL)
2168 elog(ERROR, "wrong number of index expressions");
2169
2170 return tlist;
2171}
2172
2173/*
2174 * restriction_selectivity
2175 *
2176 * Returns the selectivity of a specified restriction operator clause.
2177 * This code executes registered procedures stored in the
2178 * operator relation, by calling the function manager.
2179 *
2180 * See clause_selectivity() for the meaning of the additional parameters.
2181 */
2184 Oid operatorid,
2185 List *args,
2186 Oid inputcollid,
2187 int varRelid)
2188{
2189 RegProcedure oprrest = get_oprrest(operatorid);
2190 float8 result;
2191
2192 /*
2193 * if the oprrest procedure is missing for whatever reason, use a
2194 * selectivity of 0.5
2195 */
2196 if (!oprrest)
2197 return (Selectivity) 0.5;
2198
2199 result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2200 inputcollid,
2202 ObjectIdGetDatum(operatorid),
2204 Int32GetDatum(varRelid)));
2205
2206 if (result < 0.0 || result > 1.0)
2207 elog(ERROR, "invalid restriction selectivity: %f", result);
2208
2209 return (Selectivity) result;
2210}
2211
2212/*
2213 * join_selectivity
2214 *
2215 * Returns the selectivity of a specified join operator clause.
2216 * This code executes registered procedures stored in the
2217 * operator relation, by calling the function manager.
2218 *
2219 * See clause_selectivity() for the meaning of the additional parameters.
2220 */
2223 Oid operatorid,
2224 List *args,
2225 Oid inputcollid,
2226 JoinType jointype,
2227 SpecialJoinInfo *sjinfo)
2228{
2229 RegProcedure oprjoin = get_oprjoin(operatorid);
2230 float8 result;
2231
2232 /*
2233 * if the oprjoin procedure is missing for whatever reason, use a
2234 * selectivity of 0.5
2235 */
2236 if (!oprjoin)
2237 return (Selectivity) 0.5;
2238
2239 result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2240 inputcollid,
2242 ObjectIdGetDatum(operatorid),
2244 Int16GetDatum(jointype),
2245 PointerGetDatum(sjinfo)));
2246
2247 if (result < 0.0 || result > 1.0)
2248 elog(ERROR, "invalid join selectivity: %f", result);
2249
2250 return (Selectivity) result;
2251}
2252
2253/*
2254 * function_selectivity
2255 *
2256 * Attempt to estimate the selectivity of a specified boolean function clause
2257 * by asking its support function. If the function lacks support, return -1.
2258 *
2259 * See clause_selectivity() for the meaning of the additional parameters.
2260 */
2263 Oid funcid,
2264 List *args,
2265 Oid inputcollid,
2266 bool is_join,
2267 int varRelid,
2268 JoinType jointype,
2269 SpecialJoinInfo *sjinfo)
2270{
2271 RegProcedure prosupport = get_func_support(funcid);
2274
2275 if (!prosupport)
2276 return (Selectivity) -1; /* no support function */
2277
2278 req.type = T_SupportRequestSelectivity;
2279 req.root = root;
2280 req.funcid = funcid;
2281 req.args = args;
2282 req.inputcollid = inputcollid;
2283 req.is_join = is_join;
2284 req.varRelid = varRelid;
2285 req.jointype = jointype;
2286 req.sjinfo = sjinfo;
2287 req.selectivity = -1; /* to catch failure to set the value */
2288
2289 sresult = (SupportRequestSelectivity *)
2291 PointerGetDatum(&req)));
2292
2293 if (sresult != &req)
2294 return (Selectivity) -1; /* function did not honor request */
2295
2296 if (req.selectivity < 0.0 || req.selectivity > 1.0)
2297 elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2298
2299 return (Selectivity) req.selectivity;
2300}
2301
2302/*
2303 * add_function_cost
2304 *
2305 * Get an estimate of the execution cost of a function, and *add* it to
2306 * the contents of *cost. The estimate may include both one-time and
2307 * per-tuple components, since QualCost does.
2308 *
2309 * The funcid must always be supplied. If it is being called as the
2310 * implementation of a specific parsetree node (FuncExpr, OpExpr,
2311 * WindowFunc, etc), pass that as "node", else pass NULL.
2312 *
2313 * In some usages root might be NULL, too.
2314 */
2315void
2317 QualCost *cost)
2318{
2319 HeapTuple proctup;
2320 Form_pg_proc procform;
2321
2322 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2323 if (!HeapTupleIsValid(proctup))
2324 elog(ERROR, "cache lookup failed for function %u", funcid);
2325 procform = (Form_pg_proc) GETSTRUCT(proctup);
2326
2327 if (OidIsValid(procform->prosupport))
2328 {
2330 SupportRequestCost *sresult;
2331
2332 req.type = T_SupportRequestCost;
2333 req.root = root;
2334 req.funcid = funcid;
2335 req.node = node;
2336
2337 /* Initialize cost fields so that support function doesn't have to */
2338 req.startup = 0;
2339 req.per_tuple = 0;
2340
2341 sresult = (SupportRequestCost *)
2342 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2343 PointerGetDatum(&req)));
2344
2345 if (sresult == &req)
2346 {
2347 /* Success, so accumulate support function's estimate into *cost */
2348 cost->startup += req.startup;
2349 cost->per_tuple += req.per_tuple;
2350 ReleaseSysCache(proctup);
2351 return;
2352 }
2353 }
2354
2355 /* No support function, or it failed, so rely on procost */
2356 cost->per_tuple += procform->procost * cpu_operator_cost;
2357
2358 ReleaseSysCache(proctup);
2359}
2360
2361/*
2362 * get_function_rows
2363 *
2364 * Get an estimate of the number of rows returned by a set-returning function.
2365 *
2366 * The funcid must always be supplied. In current usage, the calling node
2367 * will always be supplied, and will be either a FuncExpr or OpExpr.
2368 * But it's a good idea to not fail if it's NULL.
2369 *
2370 * In some usages root might be NULL, too.
2371 *
2372 * Note: this returns the unfiltered result of the support function, if any.
2373 * It's usually a good idea to apply clamp_row_est() to the result, but we
2374 * leave it to the caller to do so.
2375 */
2376double
2378{
2379 HeapTuple proctup;
2380 Form_pg_proc procform;
2381 double result;
2382
2383 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2384 if (!HeapTupleIsValid(proctup))
2385 elog(ERROR, "cache lookup failed for function %u", funcid);
2386 procform = (Form_pg_proc) GETSTRUCT(proctup);
2387
2388 Assert(procform->proretset); /* else caller error */
2389
2390 if (OidIsValid(procform->prosupport))
2391 {
2393 SupportRequestRows *sresult;
2394
2395 req.type = T_SupportRequestRows;
2396 req.root = root;
2397 req.funcid = funcid;
2398 req.node = node;
2399
2400 req.rows = 0; /* just for sanity */
2401
2402 sresult = (SupportRequestRows *)
2403 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2404 PointerGetDatum(&req)));
2405
2406 if (sresult == &req)
2407 {
2408 /* Success */
2409 ReleaseSysCache(proctup);
2410 return req.rows;
2411 }
2412 }
2413
2414 /* No support function, or it failed, so rely on prorows */
2415 result = procform->prorows;
2416
2417 ReleaseSysCache(proctup);
2418
2419 return result;
2420}
2421
2422/*
2423 * has_unique_index
2424 *
2425 * Detect whether there is a unique index on the specified attribute
2426 * of the specified relation, thus allowing us to conclude that all
2427 * the (non-null) values of the attribute are distinct.
2428 *
2429 * This function does not check the index's indimmediate property, which
2430 * means that uniqueness may transiently fail to hold intra-transaction.
2431 * That's appropriate when we are making statistical estimates, but beware
2432 * of using this for any correctness proofs.
2433 */
2434bool
2436{
2437 ListCell *ilist;
2438
2439 foreach(ilist, rel->indexlist)
2440 {
2441 IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2442
2443 /*
2444 * Note: ignore partial indexes, since they don't allow us to conclude
2445 * that all attr values are distinct, *unless* they are marked predOK
2446 * which means we know the index's predicate is satisfied by the
2447 * query. We don't take any interest in expressional indexes either.
2448 * Also, a multicolumn unique index doesn't allow us to conclude that
2449 * just the specified attr is unique.
2450 */
2451 if (index->unique &&
2452 index->nkeycolumns == 1 &&
2453 index->indexkeys[0] == attno &&
2454 (index->indpred == NIL || index->predOK))
2455 return true;
2456 }
2457 return false;
2458}
2459
2460
2461/*
2462 * has_row_triggers
2463 *
2464 * Detect whether the specified relation has any row-level triggers for event.
2465 */
2466bool
2468{
2469 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2470 Relation relation;
2471 TriggerDesc *trigDesc;
2472 bool result = false;
2473
2474 /* Assume we already have adequate lock */
2475 relation = table_open(rte->relid, NoLock);
2476
2477 trigDesc = relation->trigdesc;
2478 switch (event)
2479 {
2480 case CMD_INSERT:
2481 if (trigDesc &&
2482 (trigDesc->trig_insert_after_row ||
2483 trigDesc->trig_insert_before_row))
2484 result = true;
2485 break;
2486 case CMD_UPDATE:
2487 if (trigDesc &&
2488 (trigDesc->trig_update_after_row ||
2489 trigDesc->trig_update_before_row))
2490 result = true;
2491 break;
2492 case CMD_DELETE:
2493 if (trigDesc &&
2494 (trigDesc->trig_delete_after_row ||
2495 trigDesc->trig_delete_before_row))
2496 result = true;
2497 break;
2498 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2499 case CMD_MERGE:
2500 result = false;
2501 break;
2502 default:
2503 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2504 break;
2505 }
2506
2507 table_close(relation, NoLock);
2508 return result;
2509}
2510
2511/*
2512 * has_transition_tables
2513 *
2514 * Detect whether the specified relation has any transition tables for event.
2515 */
2516bool
2518{
2519 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2520 Relation relation;
2521 TriggerDesc *trigDesc;
2522 bool result = false;
2523
2524 Assert(rte->rtekind == RTE_RELATION);
2525
2526 /* Currently foreign tables cannot have transition tables */
2527 if (rte->relkind == RELKIND_FOREIGN_TABLE)
2528 return result;
2529
2530 /* Assume we already have adequate lock */
2531 relation = table_open(rte->relid, NoLock);
2532
2533 trigDesc = relation->trigdesc;
2534 switch (event)
2535 {
2536 case CMD_INSERT:
2537 if (trigDesc &&
2538 trigDesc->trig_insert_new_table)
2539 result = true;
2540 break;
2541 case CMD_UPDATE:
2542 if (trigDesc &&
2543 (trigDesc->trig_update_old_table ||
2544 trigDesc->trig_update_new_table))
2545 result = true;
2546 break;
2547 case CMD_DELETE:
2548 if (trigDesc &&
2549 trigDesc->trig_delete_old_table)
2550 result = true;
2551 break;
2552 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2553 case CMD_MERGE:
2554 result = false;
2555 break;
2556 default:
2557 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2558 break;
2559 }
2560
2561 table_close(relation, NoLock);
2562 return result;
2563}
2564
2565/*
2566 * has_stored_generated_columns
2567 *
2568 * Does table identified by RTI have any STORED GENERATED columns?
2569 */
2570bool
2572{
2573 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2574 Relation relation;
2575 TupleDesc tupdesc;
2576 bool result = false;
2577
2578 /* Assume we already have adequate lock */
2579 relation = table_open(rte->relid, NoLock);
2580
2581 tupdesc = RelationGetDescr(relation);
2582 result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2583
2584 table_close(relation, NoLock);
2585
2586 return result;
2587}
2588
2589/*
2590 * get_dependent_generated_columns
2591 *
2592 * Get the column numbers of any STORED GENERATED columns of the relation
2593 * that depend on any column listed in target_cols. Both the input and
2594 * result bitmapsets contain column numbers offset by
2595 * FirstLowInvalidHeapAttributeNumber.
2596 */
2597Bitmapset *
2599 Bitmapset *target_cols)
2600{
2601 Bitmapset *dependentCols = NULL;
2602 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2603 Relation relation;
2604 TupleDesc tupdesc;
2605 TupleConstr *constr;
2606
2607 /* Assume we already have adequate lock */
2608 relation = table_open(rte->relid, NoLock);
2609
2610 tupdesc = RelationGetDescr(relation);
2611 constr = tupdesc->constr;
2612
2613 if (constr && constr->has_generated_stored)
2614 {
2615 for (int i = 0; i < constr->num_defval; i++)
2616 {
2617 AttrDefault *defval = &constr->defval[i];
2618 Node *expr;
2619 Bitmapset *attrs_used = NULL;
2620
2621 /* skip if not generated column */
2622 if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2623 continue;
2624
2625 /* identify columns this generated column depends on */
2626 expr = stringToNode(defval->adbin);
2627 pull_varattnos(expr, 1, &attrs_used);
2628
2629 if (bms_overlap(target_cols, attrs_used))
2630 dependentCols = bms_add_member(dependentCols,
2632 }
2633 }
2634
2635 table_close(relation, NoLock);
2636
2637 return dependentCols;
2638}
2639
2640/*
2641 * set_relation_partition_info
2642 *
2643 * Set partitioning scheme and related information for a partitioned table.
2644 */
2645static void
2647 Relation relation)
2648{
2649 PartitionDesc partdesc;
2650
2651 /*
2652 * Create the PartitionDirectory infrastructure if we didn't already.
2653 */
2654 if (root->glob->partition_directory == NULL)
2655 {
2656 root->glob->partition_directory =
2658 }
2659
2660 partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2661 relation);
2662 rel->part_scheme = find_partition_scheme(root, relation);
2663 Assert(partdesc != NULL && rel->part_scheme != NULL);
2664 rel->boundinfo = partdesc->boundinfo;
2665 rel->nparts = partdesc->nparts;
2666 set_baserel_partition_key_exprs(relation, rel);
2667 set_baserel_partition_constraint(relation, rel);
2668}
2669
2670/*
2671 * find_partition_scheme
2672 *
2673 * Find or create a PartitionScheme for this Relation.
2674 */
2675static PartitionScheme
2677{
2678 PartitionKey partkey = RelationGetPartitionKey(relation);
2679 ListCell *lc;
2680 int partnatts,
2681 i;
2682 PartitionScheme part_scheme;
2683
2684 /* A partitioned table should have a partition key. */
2685 Assert(partkey != NULL);
2686
2687 partnatts = partkey->partnatts;
2688
2689 /* Search for a matching partition scheme and return if found one. */
2690 foreach(lc, root->part_schemes)
2691 {
2692 part_scheme = lfirst(lc);
2693
2694 /* Match partitioning strategy and number of keys. */
2695 if (partkey->strategy != part_scheme->strategy ||
2696 partnatts != part_scheme->partnatts)
2697 continue;
2698
2699 /* Match partition key type properties. */
2700 if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2701 sizeof(Oid) * partnatts) != 0 ||
2702 memcmp(partkey->partopcintype, part_scheme->partopcintype,
2703 sizeof(Oid) * partnatts) != 0 ||
2704 memcmp(partkey->partcollation, part_scheme->partcollation,
2705 sizeof(Oid) * partnatts) != 0)
2706 continue;
2707
2708 /*
2709 * Length and byval information should match when partopcintype
2710 * matches.
2711 */
2712 Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2713 sizeof(int16) * partnatts) == 0);
2714 Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2715 sizeof(bool) * partnatts) == 0);
2716
2717 /*
2718 * If partopfamily and partopcintype matched, must have the same
2719 * partition comparison functions. Note that we cannot reliably
2720 * Assert the equality of function structs themselves for they might
2721 * be different across PartitionKey's, so just Assert for the function
2722 * OIDs.
2723 */
2724#ifdef USE_ASSERT_CHECKING
2725 for (i = 0; i < partkey->partnatts; i++)
2726 Assert(partkey->partsupfunc[i].fn_oid ==
2727 part_scheme->partsupfunc[i].fn_oid);
2728#endif
2729
2730 /* Found matching partition scheme. */
2731 return part_scheme;
2732 }
2733
2734 /*
2735 * Did not find matching partition scheme. Create one copying relevant
2736 * information from the relcache. We need to copy the contents of the
2737 * array since the relcache entry may not survive after we have closed the
2738 * relation.
2739 */
2740 part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2741 part_scheme->strategy = partkey->strategy;
2742 part_scheme->partnatts = partkey->partnatts;
2743
2744 part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2745 memcpy(part_scheme->partopfamily, partkey->partopfamily,
2746 sizeof(Oid) * partnatts);
2747
2748 part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2749 memcpy(part_scheme->partopcintype, partkey->partopcintype,
2750 sizeof(Oid) * partnatts);
2751
2752 part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2753 memcpy(part_scheme->partcollation, partkey->partcollation,
2754 sizeof(Oid) * partnatts);
2755
2756 part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2757 memcpy(part_scheme->parttyplen, partkey->parttyplen,
2758 sizeof(int16) * partnatts);
2759
2760 part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2761 memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2762 sizeof(bool) * partnatts);
2763
2764 part_scheme->partsupfunc = (FmgrInfo *)
2765 palloc(sizeof(FmgrInfo) * partnatts);
2766 for (i = 0; i < partnatts; i++)
2767 fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2769
2770 /* Add the partitioning scheme to PlannerInfo. */
2771 root->part_schemes = lappend(root->part_schemes, part_scheme);
2772
2773 return part_scheme;
2774}
2775
2776/*
2777 * set_baserel_partition_key_exprs
2778 *
2779 * Builds partition key expressions for the given base relation and fills
2780 * rel->partexprs.
2781 */
2782static void
2784 RelOptInfo *rel)
2785{
2786 PartitionKey partkey = RelationGetPartitionKey(relation);
2787 int partnatts;
2788 int cnt;
2789 List **partexprs;
2790 ListCell *lc;
2791 Index varno = rel->relid;
2792
2793 Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2794
2795 /* A partitioned table should have a partition key. */
2796 Assert(partkey != NULL);
2797
2798 partnatts = partkey->partnatts;
2799 partexprs = (List **) palloc(sizeof(List *) * partnatts);
2800 lc = list_head(partkey->partexprs);
2801
2802 for (cnt = 0; cnt < partnatts; cnt++)
2803 {
2804 Expr *partexpr;
2805 AttrNumber attno = partkey->partattrs[cnt];
2806
2807 if (attno != InvalidAttrNumber)
2808 {
2809 /* Single column partition key is stored as a Var node. */
2810 Assert(attno > 0);
2811
2812 partexpr = (Expr *) makeVar(varno, attno,
2813 partkey->parttypid[cnt],
2814 partkey->parttypmod[cnt],
2815 partkey->parttypcoll[cnt], 0);
2816 }
2817 else
2818 {
2819 if (lc == NULL)
2820 elog(ERROR, "wrong number of partition key expressions");
2821
2822 /* Re-stamp the expression with given varno. */
2823 partexpr = (Expr *) copyObject(lfirst(lc));
2824 ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2825 lc = lnext(partkey->partexprs, lc);
2826 }
2827
2828 /* Base relations have a single expression per key. */
2829 partexprs[cnt] = list_make1(partexpr);
2830 }
2831
2832 rel->partexprs = partexprs;
2833
2834 /*
2835 * A base relation does not have nullable partition key expressions, since
2836 * no outer join is involved. We still allocate an array of empty
2837 * expression lists to keep partition key expression handling code simple.
2838 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2839 */
2840 rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2841}
2842
2843/*
2844 * set_baserel_partition_constraint
2845 *
2846 * Builds the partition constraint for the given base relation and sets it
2847 * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2848 * given relation.
2849 */
2850static void
2852{
2853 List *partconstr;
2854
2855 if (rel->partition_qual) /* already done */
2856 return;
2857
2858 /*
2859 * Run the partition quals through const-simplification similar to check
2860 * constraints. We skip canonicalize_qual, though, because partition
2861 * quals should be in canonical form already; also, since the qual is in
2862 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2863 * format and back again.
2864 */
2865 partconstr = RelationGetPartitionQual(relation);
2866 if (partconstr)
2867 {
2868 partconstr = (List *) expression_planner((Expr *) partconstr);
2869 if (rel->relid != 1)
2870 ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2871 rel->partition_qual = partconstr;
2872 }
2873}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:581
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
uint32 BlockNumber
Definition: block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:291
#define SizeOfPageHeaderData
Definition: bufpage.h:216
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define MAXALIGN(LEN)
Definition: c.h:815
int64_t int64
Definition: c.h:540
double float8
Definition: c.h:640
int16_t int16
Definition: c.h:538
regproc RegProcedure
Definition: c.h:660
int32_t int32
Definition: c.h:539
#define unlikely(x)
Definition: c.h:407
unsigned int Index
Definition: c.h:624
#define OidIsValid(objectId)
Definition: c.h:779
bool IsSystemRelation(Relation relation)
Definition: catalog.c:74
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:382
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2270
CompareType
Definition: cmptype.h:32
@ COMPARE_LT
Definition: cmptype.h:34
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:134
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1454
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1443
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:581
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:443
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:356
Assert(PointerIsAligned(start, uint64))
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:236
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:845
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
struct ItemIdData ItemIdData
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1237
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
bool list_member(const List *list, const void *datum)
Definition: list.c:661
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1724
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1206
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, CompareType *cmptype)
Definition: lsyscache.c:266
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1331
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1309
Oid get_opfamily_member_for_cmptype(Oid opfamily, Oid lefttype, Oid righttype, CompareType cmptype)
Definition: lsyscache.c:197
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:2025
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3325
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1748
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2745
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
bool IgnoreSystemIndexes
Definition: miscinit.c:81
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1837
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
@ ONCONFLICT_UPDATE
Definition: nodes.h:430
CmdType
Definition: nodes.h:273
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_INSERT
Definition: nodes.h:277
@ CMD_DELETE
Definition: nodes.h:278
@ CMD_UPDATE
Definition: nodes.h:276
double Selectivity
Definition: nodes.h:260
#define makeNode(_type_)
Definition: nodes.h:161
JoinType
Definition: nodes.h:298
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, VarReturningType returning_type, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1049
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_VALUES
Definition: parsenodes.h:1048
@ RTE_SUBQUERY
Definition: parsenodes.h:1044
@ RTE_RESULT
Definition: parsenodes.h:1051
@ RTE_FUNCTION
Definition: parsenodes.h:1046
@ RTE_TABLEFUNC
Definition: parsenodes.h:1047
@ RTE_RELATION
Definition: parsenodes.h:1043
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:423
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:456
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:895
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:610
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:644
@ RELOPT_BASEREL
Definition: pathnodes.h:883
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:885
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:879
FormData_pg_attribute
Definition: pg_attribute.h:186
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
#define foreach_oid(var, lst)
Definition: pg_list.h:471
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1266
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1391
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2571
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:576
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition: plancat.c:682
int constraint_exclusion
Definition: plancat.c:58
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1810
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2377
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2467
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1474
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2316
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:61
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1616
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:2000
static List * get_relation_statistics(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:1699
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:2183
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1433
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2851
struct NotnullHashEntry NotnullHashEntry
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:2121
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:1184
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2646
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2435
Bitmapset * find_relation_notnullatts(PlannerInfo *root, Oid relid)
Definition: plancat.c:755
bool has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2517
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2676
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2783
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2222
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2262
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2598
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:124
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:794
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6763
int restrict_nonsystem_relation_kind
Definition: postgres.c:106
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:475
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
@ VAR_RETURNING_DEFAULT
Definition: primnodes.h:256
@ IS_NOT_NULL
Definition: primnodes.h:1977
tree ctl root
Definition: radixtree.h:1857
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:509
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:409
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:521
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RelationIsPermanent(relation)
Definition: rel.h:627
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4836
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5210
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4977
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4731
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5097
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5988
Node * expand_generated_columns_in_expr(Node *node, Relation rel, int rt_index)
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:733
TransactionId TransactionXmin
Definition: snapmgr.c:159
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool attgenerated
Definition: tupdesc.h:78
bool attisdropped
Definition: tupdesc.h:77
char attnullability
Definition: tupdesc.h:79
bool ccenforced
Definition: tupdesc.h:32
bool ccnoinherit
Definition: tupdesc.h:34
bool ccvalid
Definition: tupdesc.h:33
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
bool conenforced
Definition: rel.h:288
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1398
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1402
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1400
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:222
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:315
amcostestimate_function amcostestimate
Definition: amapi.h:302
bool amcanorderbyop
Definition: amapi.h:248
bool amoptionalkey
Definition: amapi.h:262
amgettuple_function amgettuple
Definition: amapi.h:311
amgetbitmap_function amgetbitmap
Definition: amapi.h:312
bool amsearcharray
Definition: amapi.h:264
ammarkpos_function ammarkpos
Definition: amapi.h:314
bool amcanparallel
Definition: amapi.h:274
bool amcanorder
Definition: amapi.h:246
amgettreeheight_function amgettreeheight
Definition: amapi.h:303
bool amsearchnulls
Definition: amapi.h:266
bool amcanparallel
Definition: pathnodes.h:1346
void(* amcostestimate)(struct PlannerInfo *, struct IndexPath *, double, Cost *, Cost *, Selectivity *, double *, double *) pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1351
bool amoptionalkey
Definition: pathnodes.h:1339
Oid reltablespace
Definition: pathnodes.h:1259
bool amcanmarkpos
Definition: pathnodes.h:1348
List * indrestrictinfo
Definition: pathnodes.h:1321
bool amhasgettuple
Definition: pathnodes.h:1343
bool amcanorderbyop
Definition: pathnodes.h:1338
bool hypothetical
Definition: pathnodes.h:1332
bool nullsnotdistinct
Definition: pathnodes.h:1328
List * indpred
Definition: pathnodes.h:1311
Cardinality tuples
Definition: pathnodes.h:1269
bool amsearcharray
Definition: pathnodes.h:1340
BlockNumber pages
Definition: pathnodes.h:1267
bool amsearchnulls
Definition: pathnodes.h:1341
bool amhasgetbitmap
Definition: pathnodes.h:1345
List * indextlist
Definition: pathnodes.h:1314
bool immediate
Definition: pathnodes.h:1330
Definition: pg_list.h:54
Definition: nodes.h:135
Bitmapset * notnullattnums
Definition: plancat.c:66
NullTestType nulltesttype
Definition: primnodes.h:1984
ParseLoc location
Definition: primnodes.h:1987
Expr * arg
Definition: primnodes.h:1983
List * arbiterElems
Definition: primnodes.h:2376
OnConflictAction action
Definition: primnodes.h:2373
Node * arbiterWhere
Definition: primnodes.h:2378
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:641
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * targetList
Definition: parsenodes.h:198
Query * subquery
Definition: parsenodes.h:1135
RTEKind rtekind
Definition: parsenodes.h:1078
List * baserestrictinfo
Definition: pathnodes.h:1046
uint32 amflags
Definition: pathnodes.h:1009
Bitmapset * notnullattnums
Definition: pathnodes.h:987
List * partition_qual
Definition: pathnodes.h:1096
Index relid
Definition: pathnodes.h:973
List * statlist
Definition: pathnodes.h:997
Cardinality tuples
Definition: pathnodes.h:1000
BlockNumber pages
Definition: pathnodes.h:999
RelOptKind reloptkind
Definition: pathnodes.h:921
List * indexlist
Definition: pathnodes.h:995
Oid reltablespace
Definition: pathnodes.h:975
Oid serverid
Definition: pathnodes.h:1015
int rel_parallel_workers
Definition: pathnodes.h:1007
AttrNumber max_attr
Definition: pathnodes.h:981
double allvisfrac
Definition: pathnodes.h:1001
AttrNumber min_attr
Definition: pathnodes.h:979
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
TriggerDesc * trigdesc
Definition: rel.h:117
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Expr * clause
Definition: pathnodes.h:2792
Bitmapset * keys
Definition: pathnodes.h:1431
PlannerInfo * root
Definition: supportnodes.h:191
PlannerInfo * root
Definition: supportnodes.h:218
SpecialJoinInfo * sjinfo
Definition: supportnodes.h:158
bool(* scan_bitmap_next_tuple)(TableScanDesc scan, TupleTableSlot *slot, bool *recheck, uint64 *lossy_pages, uint64 *exact_pages)
Definition: tableam.h:793
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:379
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:371
AttrNumber resno
Definition: primnodes.h:2241
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_update_new_table
Definition: reltrigger.h:77
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_insert_new_table
Definition: reltrigger.h:75
bool trig_delete_old_table
Definition: reltrigger.h:78
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool trig_update_old_table
Definition: reltrigger.h:76
bool has_not_null
Definition: tupdesc.h:45
AttrDefault * defval
Definition: tupdesc.h:40
bool has_generated_stored
Definition: tupdesc.h:46
ConstrCheck * check
Definition: tupdesc.h:41
uint16 num_defval
Definition: tupdesc.h:43
uint16 num_check
Definition: tupdesc.h:44
TupleConstr * constr
Definition: tupdesc.h:141
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Definition: type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:595
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:230
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1916
#define RESTRICT_RELKIND_FOREIGN_TABLE
Definition: tcopprot.h:45
#define FirstNormalObjectId
Definition: transam.h:197
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
#define ATTNULLABLE_UNKNOWN
Definition: tupdesc.h:85
#define ATTNULLABLE_VALID
Definition: tupdesc.h:86
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:296
bool RecoveryInProgress(void)
Definition: xlog.c:6406